• Title/Summary/Keyword: skin properties

Search Result 897, Processing Time 0.031 seconds

Physical Properties and Skin Penetration of Niosome Formulations Containing Minoxidil and Diaminopyrimidine Oxide (미녹시딜과 다이아미노피리미딘옥사이드 성분을 함유하는 니오좀 제형의 물성 및 피부투과)

  • Bo Kyung Kim;Won Hyung Kim;Kyung-Sup Yoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.2
    • /
    • pp.127-139
    • /
    • 2023
  • In this study, minoxidil, which is well known as a pharmaceutical raw material, and diaminopyrimidine oxide (DAO), which is a cosmetic raw material, were used as active ingredients to evaluate the physical properties of niosomes and compare the skin penetrations of artificial skin. To prepare niosomes of the size of nanoparticles, a high pressure homogenization method was used, and physical properties were evaluated with a zetasizer. The particle size of the noisome including the active ingredient was measured to be 99 to 123 nm according to HLB, and the zeta potential was measured in the range of -60 to -81 mV. Through DSC (differential scanning colorimetry), it was confirmed that minoxidil, a crystalline component, was uniformly dissolved in an amorphous state in niosomes. In order to confirm and compare skin penetration, it was measured by the in vitro Franz diffusion cell method, and the niosome formulation showed 3.4 times higher penetration for minoxidil and 11.1 times higher penetration for DAO than the control gel formulation. In addition, when comparing the skin penetration of minoxidil niosome and DAO niosome, a similar trend was shown, and the penetration amount of DAO was relatively high. The shapes of the niosome formulations with different HLB values were observed using Cryo-TEM, and it was confirmed that vesicles were formed in all of them and that they were intermediate between SUV (small unilamella vesicle) and LUV (large unilamella vesicle). Through this study, minoxidil, an effective drug for hair loss, and DAO, a cosmetic raw material, can be effectively delivered to the skin by encapsulating them in a noisome formulation.

Influence of Various Levels of Organic Zinc on the Live Performance, Meat Quality Attributes, and Sensory Properties of Broiler Chickens

  • Salim, Hossan Md.;Lee, Hak-Rim;Jo, Cheo-Run;Lee, Soo-Kee;Lee, Bong-Duk
    • Food Science of Animal Resources
    • /
    • v.31 no.2
    • /
    • pp.207-214
    • /
    • 2011
  • The influence of supplementing diets with various levels of organic zinc (OZ) on the performance, meat quality attributes, and sensory properties of broiler chickens was investigated. A total of 3,200 1-d-old female broiler chicks were randomly allotted to 16 floor pens (replicates) with 200 birds per pen. A corn-wheat-soybean meal basal diet (control) was formulated and 20 ppm OZ (20 OZ), 40 ppm OZ (40 OZ), or 80 ppm OZ (80 OZ) was added to the basal diet to form four dietary treatments with four replicates per treatment. Live performance of broiler chickens, meat quality, and sensory properties were evaluated. The results showed no significant difference among the treatments for live performance of broiler chickens. Significant increases (p<0.05) in thigh skin epidermis and dermis thickness were shown in the OZ supplementation groups; however, no effect of OZ on the thickness of back skin epidermis or dermis was found. Dietary OZ levels did not affect the pH of breast and thigh meat or the water holding capacity (WHC) of thigh meat, but the WHC of breast meat increased significantly (p<0.05) when birds were fed 40 OZ and 80 OZ. Results of a sensory analysis showed no differences among the dietary treatments. In conclusion, dietary OZ did not affect live performance or sensory properties of broiler chickens but did increase the WHC of breast meat and thickness of skin layers; thus, improving carcass quality in broiler chickens.

Effect of additives on physical properties of yellowfin sole skin gelatin prepared by ethanol fractional precipitation (알코올처리 각시가자미껍질 젤라틴의 물리적 특성에 미치는 첨가물의 영향)

  • Cho, Soon-Yeong;Ha, Jin-Hwan;Lee, Eung-Ho;Kim, Jin-Soo
    • Applied Biological Chemistry
    • /
    • v.39 no.3
    • /
    • pp.218-221
    • /
    • 1996
  • With a view to increase utility of ethanol fractioned fish skin gelatin as a food source, efforts of additives on physical properties of the gelatin were investigated. The physical properties such as gel strength, melting Point, gelling point and viscosity of both ethanol-treated and untreated gelatins were improved by adding ferric ion, sugar and ethanol to the gelatin sol, but were deteriorated by the added sodium chloride and acids. Insignificant difference in effect of physical properties on additives such as sodium chloride, sugar and ethanol between ethanol-treated and untreated gelatins were not observed. However, the effect of ferric ion and acids on the physical properties of ethanol-treated gelatin has a greater than that of untreated gelatin.

  • PDF

Enhancing the Moisturizing Ability of the Skin Softener using Nanoemulsion Based on Phospholipid Liposome

  • Lee, Jinseo;Park, Su In;Heo, Soo Hyeon;Kim, Miok;Shin, Moon Sam
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.236-242
    • /
    • 2020
  • In this paper, we present the improvement in low moisturizing ability and stability that existing skin softeners have due to the low oil content, by developing skin softener using nanoemulsion of phospholipid liposome, based on the properties of nanoemulsion in cosmetic formulation. In this study, two types of oil; dimethicone (DC 200/6cs) or medium chain triglyceride (MCT), and two kinds of lecithin; unsaturated or saturated were respectively applied to produce nanoemulsion. In the particle size analysis of nanoemulsion, the droplet size of nanoemulsion containing DC200/6cs and unsaturated lecithin was the smallest, and all nanoemulsion showed high stability in the measurement of zeta potential. Therefore, with the smallest particle size and high stability, moisture contents and trans epidermal water loss(TEWL) were measured using the skin softener of DC200/6cs and unsaturated lecithin contained nanoemulsion, and the measurement was compared with the non-oil skin softener and the skin softener with only small amount of oil. The results showed that the moisture content of the skin softener using nanoemulsion increased greatly than other two skin softeners, showing high hydration ability and water retention capacity, and TEWL decreased greatly, therefore preventing the evaporation of moisture from the skin. As a result, the oil content and stability of the skin softener was improved by utilizing nanoemulson based of phospholipid liposome, and it is expected to be used in various ways in cosmetic industry.

Physicochemical Characteristics of Gelatin from Abdominal Skin of Yellowfin Tuna (Thunnus albacares) (황다랑어 복부 껍질로부터 추출한 gelatin의 물리화학적 특성)

  • Yoo, Sung-Jae;Cho, Seung-Mock;Woo, Jin-Wook;Kim, Sang-Ho;Byun, Sang-Hun;Kim, Tae-Wan;Kim, Seon-Bong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.41 no.6
    • /
    • pp.419-426
    • /
    • 2008
  • Physicochemical characteristics of gelatin extracted from abdominal skin of yellowfin tuna (Thunnus albacares), were investigated by comparing its proximate composition, pH, amino acid composition, viscoelastic properties, gel strength and SDS-PAGE patterns, with those of bovine and porcine gelatins. The effects of gelatin concentration, maturation time, heat and freeze treatments on the gel strength of yellowfin tuna abdominal skin gelatin were studied. Amounts of $\alpha$-chains, $\beta$- and $\gamma$-components of yellowfin tuna abdominal skin gelatin were higher than those of the two mammailan gelatins. Yellowfin tuna abdominal skin gelatin had the lowest imino acids (proline and hydroxyproline) content, which was consistent with that of other fishes. However, yellowfin tuna abdominal skin gelatin was highest in glycine, alanine, and lysine. The gel strengths of all gelatins were proportional to the concentration of gelatin, but yellowfin tuna abdominal skin gelatin exhibited the greatest gel strength at each concentration. Yellowfin tuna abdominal skin gelatin required a longer maturation time than the two mammalian gelatins to form a firm gel. Higher heating temperature decreased the gel strength of yellow fin tuna abdominal skin gelatin more than in the two mammalian gelatins. Freezing decreased the gel strength of bovine gelatin only slightly, but longer freezing times resulted in greater reductions in gel strength in the yellowfin tuna abdominal skin and porcine gelatins.

Improvement in functional properties of conger eel skin gelatin by succinylation (Succinylation에 의한 붕장어껍질 젤라틴의 기능성 개선)

  • Kim, Jin-Soo
    • Applied Biological Chemistry
    • /
    • v.39 no.4
    • /
    • pp.282-286
    • /
    • 1996
  • To effectively utilize fish skin gelatin as a material for quality improvement in surimi gel from fish with a red muscle, conger eel skin gelatin was modified with succinic anhydride, and funtional properties such as emulsifying activity and emulsifying stability were determined. The degree of chemical modification incresed up to 0.3 g of succinic anhydride/g of gelatin, above this adding ratio a nearly constant value was reached. The maximum amount of modification was about 90%. The emulsifying activity and emulsifying stability of gelatin gradually increased up to 89.8% of succinylation extent, little changed above of succinylation extent. The other functional properties as solubility, water holding capacity, foam expansion and foam stability were improved following succinylation with 0.3 g of succinic anhydride/g of gelatin. Amino acid composition of succinylated gelatin was similar to that of unmodified gelatin. Heavy metal contents such as cadmium, lead, copper and zinc of succinylated gelatin were lower than those of unmodified gelatin.

  • PDF

Analysis of the Bioheat Equation Considering Tissue Layers with Sinusoidal Temperature Oscillation on the Skin (사인 주기의 온도 변화가 가해지는 피부 조직의 생체열 방정식에 대한 해석)

  • Choi, Woo-Lim;Moon, Sang-Don;Youn, Suk-Bum;Im, Ik-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.8
    • /
    • pp.757-762
    • /
    • 2011
  • We investigate the transient temperature response in biological tissue whose surface is exposed to alternately varying sinusoidal oscillation. Based on the Pennes bio-heat equation, we apply numerical analysis using a finite element method to find the effects of the physical properties of the skin layers. Three layers of tissue-epidermis, dermis, and subcutaneous-are considered as the solution region. We investigate the effects of different properties of the skin layers on the temperature profile. We also investigate the effects of the perfusion rate for the dermis, which is the most sensitive layer. The results show that the temperature profile of tissue depth has a discontinuous point when different physical properties are used.

Correlation of the Wall Skin-Friction and Streamwise Velocity Fluctuations in a Turbulent Boundary Layer(I) -Analysis of Long-Time Averaged Space-Time Correlation- (난류경계층에서 벽마찰력과 유동방향 속도성분과의 상관관계(I)-시간 평균된 공간-시간 상관관계의 분석-)

  • Yang, Jun-Mo;Yu, Jeong-Yeol;Choe, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.140-152
    • /
    • 1997
  • A simultaneous measurement of the wall skin friction and near-wall streamwise velocity fluctuations is performed using hot film and hot wire anemometers to investigate the relation between them. Near-wall turbulence statistics measured with a hot-wire probe are in good agreement with previous results. Turbulence properties of the wall skin friction fluctuations measured with a hot film also show fairly good agreements with those measured by others except that rms level is lower in the present study. Long-time averaged space- time correlations show that the wall skin friction is highly correlated with a turbulence structure which is tilted from the wall in the streamwise direction. Tilting angles are obtained from the phase shifts between the wall skin-friction and streamwise velocity fluctuations. The convection velocity of the near-wall streamwise velocity obtained from the space-time correlation is in good agreement with that from the direct numerical simulation database.

Highly Sensitive Flexible Organic Field-Effect Transistor Pressure Sensors Using Microstructured Ferroelectric Gate Dielectrics

  • Kim, Do-Il;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.277.2-277.2
    • /
    • 2014
  • For next-generation electronic applications, human-machine interface devices have recently been demonstrated such as the wearable computer as well as the electronic skin (e-skin). For integration of those systems, it is essential to develop many kinds of components including displays, energy generators and sensors. In particular, flexible sensing devices to detect some stimuli like strain, pressure, light, temperature, gase and humidity have been investigated for last few decades. Among many condidates, a pressure sensing device based on organic field-effect transistors (OFETs) is one of interesting structure in flexible touch displays, bio-monitoring and e-skin because of their flexibility. In this study, we have investigated a flexible e-skin based on highly sensitive, pressure-responsive OFETs using microstructured ferroelectric gate dielectrics, which simulates both rapidly adapting (RA) and slowly adatping (SA) mechanoreceptors in human skin. In SA-type static pressure, furthermore, we also demonstrate that the FET array can detect thermal stimuli for thermoreception through decoupling of the input signals from simultaneously applied pressure. The microstructured highly crystalline poly(vinylidene fluoride-trifluoroethylene) possessing piezoelectric-pyroelectric properties in OFETs allowed monitoring RA- and SA-mode responses in dyanamic and static pressurizing conditions, which enables to apply the e-skin to bio-monitoring of human and robotics.

  • PDF

Clinical improvement of amino propane sulfonic acid and it's quantitative measurement with a new opticoprofilometry (Amino propane sulfonic acid의 임상적 개선효과 및 새로운 opticoprofilometry 방법에 의한 정량분석)

  • 선보경;이해광
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.21 no.1
    • /
    • pp.1-18
    • /
    • 1995
  • We had tested the effect of amino propane sulfonic acid(APSA) on the human skin with non-invasive technique. It was tested with four parameters that were hydration, elasticity, color and skin wrinkles. In vitro culture systems, APSA stimulated the proliferation of fibroblasts bolt it didn't stimulate that of keratinocyte. Also we obtained the similar effects in the raft culture method. So we concluded that APSA affected the dermal region than the epidermal region. In clinical tests, APSA changed the skin color, pbiomechanical properties(especially elasticity) and reduced skin wrinkles of the volunteers. And we could get the better results of skin wrinkle improvement by use of Skin Visiometer than Silflo Image analysis systems.

  • PDF