• Title/Summary/Keyword: skin layer

Search Result 669, Processing Time 0.029 seconds

Study of Multi-layer Cleansing Oil Using Solubility Parameter (Solubility parameter를 이용한 다층 클렌징 오일에 관한 연구)

  • Park, Chan-Ik;Kim, Bo-Ae;Yang, Jae-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.240-247
    • /
    • 2009
  • The purpose of this study is to develop a method to evaluate solubility parameter interactions of cosmetic ingredients in formulations. This experimentation relates to the fabrication of new multi-layer cleansing oil which can remove make-up products such as lipstick, foundation, mascara, eye shadow, etc., and also can wash away dirt and sebum from the skin just in one stage process. Solubility parameter and specific gravity of various cosmetic ingredients are measured to explain the cleanliness of interface, detergency of make-up cosmetics on the skin surface. The results suggest that it is possible for cosmetic chemists to use solubility parameter of cosmetic materials for fabrication of new formulation of 3-layer cleansing oil.

Technical Trend of Multi-function for Nano-magnetic Material (다기능성 나노자성복합소재 기술동향)

  • Kim, Yu-Sang
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.1
    • /
    • pp.43-52
    • /
    • 2012
  • Recently, it has been developed for Eco-environment, Super light, Multi-functional nano materials. As needed mobile parts in Smart phone or TV, computer, information communication for high pass signal, multi-function, Magnetic thin film materials have been developed. As last, magnetic powder, sintered and sputtering parts were thick and low purity than electroplating layer, low pass signal and noise were resulted, vibrated TV screen. Because chemical complex temperature was high and ununiform surface layer, it has been very difficult for data pass in High Frequency (GHz) area. Large capacity data pass is used to GHz. Above GHz, signal pass velocity is dependent on Skin Effect of surface layer. If surface layer is thick or ununiform, attachment is poor, low pass signal and cross talk, noise are produced and leaked. It has been reported technical trend of Electrochemically plating and Surface treatment of Metal, Polymer, Ceramic etc. by dispersion/complex for Multi functional nano-magnetic material in this paper.

Strain Analysis of Composite Laminates Using Optical Fiber Sensor (광섬유센서를 이용한 복합적층판의 변형률 해석)

  • Woo S.C.;Choi N.S.;Park L.Y.;Kwon I.B.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.111-114
    • /
    • 2004
  • Using the embedded optical fiber sensor of totally-reflected extrinsic Fabry-Perot interferometer(TR-EFPI), longitudinal strains(Ex) of the core and skin layers in glass fiber reinforced plastic(GFRP) cross-ply composite laminates have been measured. Transmission optical microscopy was employed to study the damage formation around the TR-EFPI sensor. It was observed that values of ex in the interior of the skin layer and the core layer measured by embedded TR-EFPI sensor was significantly higher than that of the specimen surface measured by strain gauges. The experimental results agreed well with those from finite element analysis on the basis of uniform stress model. Large strains in the core layer led to the occurrence of transverse cracks which drastically reduced the strain at failure of optical fiber sensor embedded in the core layer.

  • PDF

Cutaneous Toxicity of Xylene Application to Rat Skin

  • Jeon, Tae-Won;Lee, Sang-Hee;Yoon, Chong-Guk
    • Biomedical Science Letters
    • /
    • v.8 no.2
    • /
    • pp.83-88
    • /
    • 2002
  • To investigate the skin toxicity of xylene, xylene (25 mg/$\textrm{cm}^2$) has been sequentially applied to the rat skin for four days. On the light microscopic examination, epithelium was left out with infiltration of inflammatory cells in border with dermis, and formation of new epithelial layer was shown under the inflammatory zone. Application of xylene to the rat skin showed the marked rise of cutaneous xanthine oxidase activity whereas, He activities of oxygen free radical scavenging enzymes, superoxide dismutase and glutathione S-transferase, were significantly declined. Furthermore, the content of cutaneous glutathione was more and less decreased in rat skin applied with xylene. In conclusion, these results suggest that a part of oxygen free radical may be responsible for morphological changes in skin by applying xylene to the rat skin.

  • PDF

Effect of Skin Burn on the Skin and Liver (피부화상이 피부 및 간에 미치는 영향)

  • Nam, Chul-Hyun;Seo, Hyun-Gyu;Hwang, Tae-Yeun;Choi, Hyun-Lim;Lee, Dong-Ho
    • Journal of Korean Physical Therapy Science
    • /
    • v.8 no.2
    • /
    • pp.1091-1097
    • /
    • 2001
  • The main experiments was investigated the skin tissue damage changing for the skin bum having influence on the skin and the liver and also observed the radical liver weight, ALT in the serum, the fluctuating of AST for the skin bum causing to the liver damage. Anatomically the edema formation of skin after thermal injury was showed, and skin bum increased liver weight (% of body weight, p<0.05) and the activity of serum aniline aminotrasferase (p<0.05), and also histologically induced wes of epidermal layer, protein degeneration of connective tissue, local hemorrhage and degeneration of glandular epithelium in the skin tissue. Liver tissue showed the evidences of postbum damage, they were sinusoidal dilatation, cell swelling, infiltration of inflammatory cells.

  • PDF

Effect of Toluene Application to the Rat Skin on the Oxygen Free Radical Metabolizing System (흰쥐에 있어서 피부조직의 Oxygen Free Radical 대사계에 미치는 Toluene의 영향)

  • 채순님;윤종국;박원학
    • Toxicological Research
    • /
    • v.17 no.1
    • /
    • pp.33-39
    • /
    • 2001
  • To evaluate the skin toxicity oj topical toluene application, toluene (35 mg/$cm^2$) was sequentially applied to the portion rat skin for five days. The topical toluene application resulted in increased xanthine oxidase activity and CYP content, and significantly decreased superoxide dismutase and glutathione peroxidase activities at five days in rat skin. Especially catalase activity was remarkably decreased in toluene-applied rat skin. And benzylalcohol dehydrogenase activity showed also a significant decrease in toluene-applied skin. On the other hand, histopathological ultrastructural examination revealed disrupted epidermal basement membrane, rared intercellular adhensions and degenerated keratin layer due to topical toluene application. Increased deposit of cerrous perhydroxide resulted from reaction with $H_2O_2$was abserved in toluene-treated animals. These results indicate that oxygen free radical may be responsible for ultrastructural changes in skin tissue by toluene application to rat skin.

  • PDF

Preparation and Drug Release Properties of Naproxen Imprinted Biodegradable Polymers Based Multi-Layer Biomaterials (나프록센이 각인된 생분해성 고분자 기반 다층 바이오소재의 제조 및 약물 방출 특성)

  • Eun-Bi Cho;Han-Seong Kim;Min‑Jin Hwang;Soon-Do Yoon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.161-169
    • /
    • 2023
  • In this study, we prepared naproxen (NP) imprinted biodegradable polymer based multi-layer biomaterials using allbanggae starch (ABS), polyvinyl alcohol (PVA), and alginic acid (SA), and investigated their physicochemical properties and the controlled drug release effects. In addition, the prepared multi-layer biomaterials were characterized by FE-SEM and FT-IR. In order to confirm the controlled drug release effect for the transdermal drug delivery system (TDDS), the NP release properties of NP imprinted multi-layer biomaterials were investigated using various pH buffer solutions and artificial skin at 36.5 ℃. The results of NP release in various pH buffer solutions indicated that the NP release at high pH was about 1.3 times faster than that at low pH. In addition, NP release in multi-layer biomaterials was about 4.0 times slower than that in single-layer biomaterials. It was confirmed that the NP release rate in triple-layer biomaterials was 4.0 times slower than that in single-layer biomaterials while using artificial skin. Also, it could be found that NP in double-layer biomaterials and triple-layer biomaterials was released sustainably for 12 h. The NP release mechanism in pH buffer solutions followed the Fickian diffusion mechanism, but followed the non-Fickian diffusion mechanism with artificial skin.

Deformation and Fracture Analysis of Honeycomb Sandwich Composites under Bending Loading (굽힘 하중을 받는 하니컴 샌드위치 복합재료의 변형 및 파괴 해석)

  • Kim Hyoung-Gu;Choi Nak-Sam
    • Composites Research
    • /
    • v.18 no.1
    • /
    • pp.30-37
    • /
    • 2005
  • The bending strength characteristics and local deformation behaviors of honeycomb sandwich composites were investigated using three-point bending experiment and finite element simulation with a real model of honeycomb core. Two kinds of cell sizes of honeycomb core, two kinds of skin layer thicknesses, perfect bonding specimen as well as initial delamination specimen were used for analysis of stress and deformation behaviors of honeycomb sandwich beams. Various failure modes such as skin layer yielding, interfacial delamination, core shear deformation and local buckling were considered. Its simulation results were very comparable to the experimental ones. Consequently, cell size of honeycomb core and skin layer thickness had dominant effects on the bending strength and deformation behaviors of honeycomb sandwich composites. Specimens of large core cell size and thin skin layer showed that bending strength decreased by $30\~68\%$.

Formation of Liquid Crystal Gel with Hydrogenated Lecithin and Its Effectiveness

  • Kim In-Young;Lee Joo-Dong;Ryoo Hee-Chang;Zhoh Choon-Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.29 no.2 s.43
    • /
    • pp.181-191
    • /
    • 2003
  • This study described about method that form liquid crystal gel (LCG) by main ingredient with hydrogenated lechin (HL) in OW emulsion system. Result of stability test is as following with most suitable LCG's composition. Composition of LCG is as following. To form liquid crystal, an emulsifier used $4.0\;wt\%$ of cetostearyl alcohol (CA) by $4.0\;wt\%$ of HL as a booster, Moisturizers contained $2\;wt\%$ of glycerin and $3.0\;wt\%$ of 1.3-butylene glycol (1,3-BG). Suitable emollients used $3.0\;wt\%$ of cyclomethicone, $3.0\;wt\%$ of isononyl isononanoate (ININ), $3.0\;wt\%$ of cerpric/carprylic triglycerides (CCTG), $3.0\;wt\%$ of macademia nut oil (MNO) in liquid crystal gel formation. On optimum conditions of LCG formation, the pHs were formed all well under acidity or alkalinity conditions. Considering safety of skin, PH was the most suitable $\pm61.0$ ranges. The stable hardness of LCG formation appeared best in $32\;dyne/cm^2.$ Particle of LCG is forming size of $1{\~}20\;{\mu}m$ um range, and confirmed that the most excellent LCG is formed in $1{\~}6\;{\mu}m$ range. According to result that observe shape of LCG with optical or polarization microscope, LCG could was formed, and confirmed that is forming multi-layer lamellar type structure around the LCG. Moisturizing effect measured clinical test about 20 volunteers. As a result, moisturizing effect of LCG compares to placebo cream was increased $30.6\%$. This could predicted that polyol group is appeared the actual state because is adsorbed much to round liquid crystal droplets to multi-lamellar layer's hydrophilic group. It could predicted that polyol group is vast quantity present phase that appear mixed because is adsorbed to round liquid crystal to multi-lamellar layer's hydrophilic group. This LCG formation theory may contribute greatly in cosmetics and pharmacy industry development.

Flexural Behavior of Highly Ductile Cement Composites Mimicking Boundary Conditions of Shellfish Skin Layer (패류 껍질층의 경계면을 모방한 고연성 시멘트 복합재료의 휨 거동)

  • Kwon, Ki-Seong;Chun, Jae-Yeong;Bang, Jin-Wook;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.108-115
    • /
    • 2020
  • In this study, the flexural performance of Highly Ductile Cement Composites(HDCC) mimicking boundary conditions of shellfish skin layer was evaluated. To improve ductility by mimicking the boundary skin layer structure of shellfish, the method of stratification by charging between precast panels using HDCC and the method of distributing PE-mesh to the interface surface were applied. Evaluation of flexural performance of layered cement composite materials mimicking boundary conditions of shellfish skin layer resulted in increased ductility of all test specimens applied with stratified cross-section compared to typical bending test specimens. The layered method by inserting PE-mesh showed excellent ductility. This is most likely because the inserted PE-mesh made an interface for separating the layers while the HDCC pillars in the PE-mesh gave adhesion between layers.