• Title/Summary/Keyword: skin depth

Search Result 371, Processing Time 0.037 seconds

Fluid Transport Properties of Skin Concrete and New Suggestion to Determine Minimum Cover Concrete (콘크리트 표면의 유체이동특성과 최소피복두께 결정을 위한 제안)

  • 이창수;윤인석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.543-546
    • /
    • 2002
  • This paper discussed micro - structure of skin concrete to understand transport properties from surface and seek thickness from surface which is seriously influenced on durability. Concrete at nearer surface has high porosity relative to inner concrete. The porosity of concrete and ISAT value at region from surface to 20 mm depth is decreased with depth. On the other hand, according to the result of ASTM C 1202 with specimen thickness, critical depth which affects fast ionic penetration through interfacial transition zone (ITZ) equals 35mm and the critical depth would be directly influenced by the effects of ITZ on chloride diffusion unrelated with W/C ratio.

  • PDF

Lagrangian observation and modelling of sea surface wind-induced drift(skin drift) (해양 표면취송류(skin drift)의 라그랑쥐 측류 및 모델링)

  • Lee Moonjin;Kang Yong Q.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.2
    • /
    • pp.11-17
    • /
    • 2000
  • The drift and movement of oil slick in the sea are closely related to the flows at the sea surface (at 0m depth) because specific gravity of an oil is lighter than that of sea water. As an effort toward a development of realistic model for oil spill drift on the sea surface, a study on sea surface wind-induced drift (skin drift) at 4 coastal regions of Korea was carried out. In this study, skin drifts were inferred from difference between the flow at the sea surface and that in underwater (at 1.5m depth). The average speed of skin drift in our experiments was 2.9% of wind speeds and the average direction of skin drift to wind was deflected to the right by 18.6°. The results of this experiment were used in the modelling of the skin drift as a prompt response of time-variable wind. The modelled skin drift, which corresponds to observed wind, successfully reproduced the observed trajectories of sea surface flows.

  • PDF

Simulation for Contact Angle of Droplet on Riblet Surface

  • Kim, Tae Wan
    • Tribology and Lubricants
    • /
    • v.33 no.5
    • /
    • pp.202-206
    • /
    • 2017
  • In this study, the hydrophobicity properties for riblet surfaces that replicate shark skin are simulated. Riblet surfaces with surface roughness on riblets are generated numerically based on the measured data of real shark skin. We assumed that a rib on a scale is hemi-elliptical surface. The surface used in the simulation for the calculation of contact angle is composed of 9 scales like checkerboard type with a roughness. The contact angle of a water droplet can be calculated using the Wenzel equation and Cassie-Baxter equation for the generated riblet surfaces. The variation of contact angles with a fractional depth of penetration for the generated shark skin surfaces without and with coatings is demonstrated in the condition of solid-air-water. The results show that the contact angle for the surface without coating decreases with an increase of the fractional depth of penetration more drastically than that for the surface with coating. We compared the experimental and simulated results. It is shown that the measured contact angles of the shark skin template and the shark skin replica are within the simulated results. Therefore the contact angle of water droplet for rough surfaces can be estimated by the developed numerical method in this study.

Effect of Transcutaneous High Frequency Wave on the Change of Tissue Temperature and Histology in Sprague-Dawley Rat (백서에서 경피적 고주파 자극에 따른 온도 변화 및 조직 변화)

  • Kim, Kyung Ah;Moon, Chang Won;Song, Da-Hyun;Kim, Sang Jun
    • Clinical Pain
    • /
    • v.15 no.2
    • /
    • pp.92-96
    • /
    • 2016
  • Objective: High frequency wave has been used in cancer treatment and cosmetic area but not in musculoskeletal pain yet. The purpose of this study is to evaluate temperature distribution according to depth and confirm safety of high frequency wave through animal study. Method: High frequency wave was applied to the posterior limb of 9 Sprague-Dawley rats for 20 minutes (experimental group) and no wave was used in the same number of rats for control group. Tissue temperature was measured from skin surface to 1 cm depth (surface, 1 mm, 5 mm, and 1 cm) for 5 seconds. Results: In the experimental group, temperature was elevated 3.2℃ at skin surface, 2.87℃ at 1 mm, 2.25℃ in 5 mm, and 1.74℃ in 1 cm depth. These were significantly different from those in the control group (p<0.001). There was no bulla or redness in the skin after high frequency wave stimulation and neither change of myocytes nor collagen degeneration was found in the tissue histology. There was no apoptosis in the skin surface and muscle layer in TUNEL assay. Conclusion: High frequency wave elevated tissue temperature from the skin to muscle layer without both histologic change and apoptosis.

The Effect of Coil Shape on the Electromagnetic Force in the Cylindrical Electromagnetic Pump Using Linear Traveling Traveling Magnetic Field (선형 이동 자기장을 사용한 원통형 전자기 펌프의 전자기력에 미치는 코일 모양의 영향)

  • 이경우;정순효;오영주;조영환;심재동
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.892-899
    • /
    • 1995
  • A numerical simulation program based on the finite elerrent method is developed for calculating electromagnetic field of the cylindrical electromagnetic pump. The calculated results by the developed program show that Lorentz forces show maximum peak at an optimum length ($L_c$) of the induction coil. The value of $L_c$ depends on the radius of the molten metal when the skin depth is large. On the other hand, the value of $L_c$ depends on the skin depth when it is small.

  • PDF

Wettability Simulation of Oil Droplet on Riblet Surface (리블렛 표면에서 유적의 젖음성에 대한 수치 해석)

  • Kim, TaeWan
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.94-98
    • /
    • 2019
  • The riblet structure like shark skin has been widely studied owing to its drag reduction and anti-fouling properties. In this study we simulated the wettability of an oil droplet on a riblet surface. We developed a numerical analysis method using the Wenzel equation and Cassie-Baxter equation that can estimate the contact angle with a penetrated depth of the droplet on rough surfaces. Riblet surfaces with nine scales composed of five hemi-elliptical ribs are generated numerically. The variation of contact angles with fractional depth of penetration for the generated riblet surfaces with and without coatings is demonstrated in the condition of solid-air-oil and solid-water-oil interfaces. The contact angle for the uncoated surface decreases with increasing fractional depth of penetration more drastically than that for the coated surface. For the effect of surface roughness on the contact angle of the droplet, the oleophilic surface gives lower contact angle when the surface is rougher, whereas the oleoophobic surface gives higher contact angle with higher roughness To verify the analysis results, the wetting angle was measured in the solid-air-oil interface and solid-water-oil interface for the shark-skin template and shark-skin replica. The effects of teflon coating were also evaluated. It is shown that the simulation results cover the experimental ones.

Implementation of Radiation Damage in Vitro Model using Swine Skin (돼지피부를 사용한 방사선 체외 장해모델 구현연구)

  • Jung, Hongmoon;Won, Doyeon;Jeong, Dong Kyung;Jung, Jaeeun
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.2
    • /
    • pp.139-144
    • /
    • 2016
  • The study of radiation-hazard in the human skin tissue is carried out by direct irradiating to experimental animals. The influences of a radiation to the animal's skin tissue are analyzed from this experiment. However, this also accompanies losses in terms of both time and economy. In this study, we simulated human tissue by using a swine skin tissue. The depth of the swine skin tissue for the experiment is determined, and the amount of the direct radiation below this skin depth is analyzed numerically. The amount of the radiation occurred by exposure below the skin tissue can be inferred. Moreover, it is possible to use only cells effectively and animal experiments to analyze the body-hazard by radiation.

THE INFLUENCE OF SOY ISOFLAVON TO THE SKIN AGING IN PRE- MENOPAUSAL WOMEN

  • Subchan, P.;Tranggono, R.I.S.;Djajadisastra, J.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.73-84
    • /
    • 2003
  • Skin aging process on pre-menopausal women is a problem that needs to be prevented as early as possible. The decrease of oestrogen level which is one of the intrinsic factors of the skin aging process will affect the skin biological process, due to oestrogen receptors on the skin. A number of researches conducted on pre-menopausal women with the allocation of oestrogen hormone resulted in delaying the skin aging process. The administration of soy isoflavon, a phytoestrogen found in daily food, on pre-menopausal women is hoped to be able to prevent skin aging process, even clinically or molecular biologically. This research aims to explain the benefit of administering of soy isoflavon on skin aging process. The design of the research is randomised controlled trial (RCT). As many as 60 pre-menopausal women were collected with simple random sampling method. Soy isoflavon is an independent variable, while skin aging process is a dependent variable assessed from the hydration, sebum level, average roughness, depth of wrinkles, skin clarity, length of the telomere. Analysis was conducted using t and MANDVA tests and.the result showed a significance (F = 10,439; p = 0,001) over the allocation of soy isoflavon to the whole variable dependent, including the telomere length and the skin hydration, meant that allocation of soy isoflavon could delay skin aging process.

  • PDF

Study on Portions and Layers of the Skin - based on "Naejing(內經)" - (피(皮)의 분(分)과 부(部)에 대한 연구 - "황제내경(黃帝內經)"을 중심으로 -)

  • Kang, Jung-Soo
    • Journal of Haehwa Medicine
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • By studying the portions and layers(分部), left and right, superior and inferior, location of yin and yang, and beginning and end of diseases of skin, which is the core point of the theory of cutaneous region(皮部論) in "Naejing(內經)", in the physiological and pathological perspective, based on opinion of historic memorial doctors, arrived to the conclusion as below. Cutaneous region means not only the distribution of three yin and three yang(三陰三陽) of the surface, but also inside and outside, shallowness and depth, and it is the system which unites meridians, networks, and vessels. It is divided into portions and layers. The origin and beginning of diseases and the rule of favorable pattern and unfavorable pattern can be known through it. The portion of skin is not only the area that meridian vessels belongs to skin, but also the area that activation of twelve meridian vessels are expressed in the surface. The layer of skin is consisted in order of skin-tertiary collateral vessel-collateral vessel-meridian vessel-bone. In "Naejing", there are two preconditions to divide three yin and three yang into yin and yang. The first is standing while looking the south, and second is the quotation "outside is side of yang(外者爲陽 內者爲陰)." According to this preconditions, yang of outside of yang brightness, lesser yang, and greater yang is the whole body, except inside of hand and foot which yin of lesser yin, pericardium, and greater yin. Superior and inferior of the portions and the layers is designated as hand and foot, theological basis of which superior and inferior work in same diagnostic method can be found in the root and the basis(標本) and the origin and the insertion(根結). In conclusion, cutaneous region not only manages layer of the skin, but also it is divided into layers and portions, so it has close relations between meridian vessels and collateral vessels. The in-depth study of cutaneous region and meridians should be progress, in order to practice of diagnosis and acupuncture and moxibustion more.

Antiaging effects of the mixture of Panax ginseng and Crataegus pinnatifida in human dermal fibroblasts and healthy human skin

  • Hwang, Eunson;Park, Sang-Yong;Yin, Chang Shik;Kim, Hee-Taek;Kim, Yong Min;Yi, Tae Hoo
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.69-77
    • /
    • 2017
  • Background: Human skin undergoes distinct changes throughout the aging process, based on both intrinsic and extrinsic factors. In a process called photoaging, UVB irradiation leads to upregulation of matrix metalloproteinase-1, which then causes collagen degradation and premature aging. Mixtures of medicinal plants have traditionally been used as drugs in oriental medicine. Based on the previously reported antioxidant properties of Panax ginseng Meyer and Crataegus pinnatifida, we hypothesized that the mixture of P. ginseng Meyer and C. pinnatifida (GC) would have protective effects against skin aging. Methods: Anti-aging activity was examined both in human dermal fibroblasts under UVB irradiation by using Western blot analysis and in healthy human skin by examining noninvasive measurements. Results: In vitro studies showed that GC improved procollagen type I expression and diminished matrix metalloproteinase-1 secretion. Based on noninvasive measurements, skin roughness values, including total roughness (R1), maximum roughness (R2), smoothness depth and average roughness (R3), and global photodamage scores were improved by GC application. Moreover, GC ameliorated the high values of smoothness depth (R4), which means that GC reduced loss of skin moisture. Conclusion: These results suggest that GC can prevent aging by inhibiting wrinkle formation and increasing moisture in the human skin.