얼굴 검출은 복잡한 배경 내에서 다양한 얼굴의 자세로 인해 여전히 어려운 문제에 직면하고 있다. 본 논문은 피부색과 깊이 정보를 기반으로 한 한명 또는 여러 명의 얼굴을 검출하는 효과적인 알고리즘을 제안한다. 먼저 우리는 컬러 영상에서 가우시안 혼합 모델을 이용한 피부색 검출 방법에 대해 소개한다. 그리고 Kinect V2의 깊이 센서를 이용하여 획득한 3차원의 깊이 정보는 배경으로부터 사람의 몸을 분할할 때 유용하다. 그리고 레이블링 과정에서 여러 개의 특징을 이용하여 얼굴이 아닌 영역은 성공적으로 제거된다. 실험 결과를 통해 제안한 얼굴 검출 알고리즘은 다양한 조건과 복잡한 배경에서 얼굴이 효과적으로 검출되는 것을 확인할 수 있다.
The purpose of this research is to provide the basic data for the development of make-up color application system, based of Korean's skin tone and the preference in make-up color to enhance the effectiveness of the education of beauty in universities. The research was conducted by the previous studies, the analyses of sale's rate of hue-cosmetics, the analytic experiment of color of cosmetics by using Spectrum Color Analyzer and other experimental researches. This research, based on the results of three preliminary researches, shows the result of evaluation from perceivers which has been come out from the experiment of having one model in her twenties being changed with twenty-two different conditions of make-up. Here follows the result of the research. Firstly, there was difference on perceiving images in terms of the gender of perceivers and especially male-group tend to have clearly perceived the gap between elegance-greyish purple, orange-natural, red-classic on monochrome make-up and contrast make-up. Secondly, in terms of lip-colors, salmon pink and pink was regarded positively to both female and male subjects and to male subjects, greyish purple was thought to be better on darker skin-tone and to female subjects, better on lighter skin-tone. Thirdly, on image make-up, romantic gives intelligent image regardless of skin-tone and gender, especially gives more positive looks to male subjects. Natural and classic elements were perceived more positively on darker skin-tone and had bigger perceiving gap in female subjects. Fourthly, in preference rate, male subjects normally preferred the look with make-up than female subjects did and salmon pink and pink lip color was preferred on the darker skin-tone.
본 논문에서는 복잡한 배경에서의 얼굴 추출 방법을 제안한다. 제안된 알고리즘은 적응 퍼지 색 분할기법을 사용하여 얼굴색과 머리색을 분할시킨다. 얼굴색 분포는 Y,Cb,Cr 색 공간내에서 유도되어지고, 조명값에 적응적인 퍼지 시스템을 사용하여 얼굴색을 구분해낸다. 머리색은 RGB 색 공간내에서 구분되어진다. 전처리 과정을 거쳐 추출되어진 얼굴색과 머리색 영역에 컨벡스 헐을 적용하여 그들의 관계를 통해 최종적인 얼굴 영역이 추출되어진다. 제안된 방법은 기존의 패턴 매칭 방법에 비해 효율적인 성능을 나타낸다. 제안된 알고리즘의 유효성을 실험을 통해 증명하며, 색 영역에서의 제한 조건 없이 성공적으로 얼굴 영역을 추출해 냄을 알 수 있다.
There are no authentic solutions in a face region extraction problem though it is an important part of pattern recognition and has diverse application fields. It is not easy to develop the facial region extraction algorithm because the facial image is very sensitive according to age, sex, and illumination. In this paper, to solve these difficulties, a fuzzy color filer based on the facial region extraction algorithm is proposed. The fuzzy color filter makes the robust facial region extraction enable by modeling the skin color. Especially, it is robust in facial region extraction with various illuminations. In addition, to identify the fuzzy color filter, a linear matrix inequality(LMI) optimization method is used. Finally, the simulation result is given to confirm the superiority of the proposed algorithm.
본 논문은 피부색 요소의 유클리디안거리를 계산 얼굴영역을 추출하고 얼굴의 특징요소를 추출하는 방법을 제안하였다. 제안한 알고리즘은 조명보정과 얼굴 검출 과정으로구성되었다. 조명보정 과정에서는 조명변화에 대한 보정기능을 수행한다. 얼굴 검출 과정은 20개의 피부색 표본영상에서 색상과 채도를 특징벡터로 사용, 입력영상과의 유클리디안 거리를 구하여 피부색 영역을 추출하였다. 추출된 얼굴 후보영역에서 CMY칼라 모델 C공간에서 눈을 검출 하였고, YIQ 칼라 모델 Q공간에서 입을 검출하였다. 추출된 얼굴 후보영역에서 일반적인 얼굴에 대한 지식을 기반으로 얼굴 영역을 검출하였다. 입력받은 40개의 정면 칼라 영상으로 실험한 결과 100%의 얼굴 검출율을 보였다.
본 논문에서는 입력영상에서 적응적으로 피부색상 모델을 생성하여 얼굴을 탐지하는 방법을 제안한다. 제안하는 방법의 기본적인 절차는 먼저 눈의 특징을 인공신경망에 적용하여 눈 후보를 찾은 후, 그 주변의 색상을 이용하여 피부영역의 색상값 분포를 찾는다. 그 다음은 피부영역으로 검출된 색상값 분포를 이용하여 얼굴영역을 산출하고, 해당 얼굴영역 내에서 입 후보를 찾아 눈 후보와 입 후보의 구조적인 관계가 얼굴 구조와의 일치여부를 판단하여 얼굴영역을 검증하는 과정을 거친다. 이 방법은 눈을 찾아서 피부영역을 적응적으로 검출하기 때문에 기존의 얼굴탐지 방법들의 문제인 피부색상의 왜곡으로 인한 오검출을 해결하였다. 실험은 눈 탐지와, 피부 탐지, 입 탐지, 얼굴탐지에 대해 각각 수행하였다. 실험을 통하여 기존의 주요 방법들 보다 우수한 결과를 보였다.
Transactions on Electrical and Electronic Materials
/
제13권1호
/
pp.10-15
/
2012
In conventional, skin detection methods using for skin color definitions is based on prior knowledge. By experimentation, the threshold value for dividing the background from the skin region is determined subjectively. A drawback of such techniques is that their performance is dependent on a threshold value which is estimated from repeated experiments. To overcome this, the present paper introduces a skin region detection method. This method uses a histogram approximation based on the mean shift algorithm. This proposed method applies the mean shift procedure to a histogram of a skin map of the input image. It is generated by comparing with the standard skin colors in the $C_bC_r$ color space. It divides the background from the skin region by selecting the maximum value according to the brightness level. As the histogram has the form of a discontinuous function. It is accumulated according to the brightness values of the pixels. It is then, approximated by a Gaussian mixture model (GMM) using the Bezier curve technique. Thus, the proposed method detects the skin region using the mean shift procedure to determine a maximum value. Rather than using a manually selected threshold value, as in existing techniques this becomes the dividing point. Experiments confirm that the new procedure effectively detects the skin region.
본 논문에서는 사람의 신체 일부분을 추적하는 시스템을 위해서 피부영역을 추출하고 여러 개의 영역을 추적하는 다중 CAMShift 알고리즘(Multi Continuously Adaptive Mean Shift Algorithm)을 제안하였다. 입력 영상에서 피부영역을 추출하기 위해 영상의 RGB의 특정값을 기준으로 피부색에 적응적인 임계값을 적용하였다. 이때 적용된 피부영역을 양손, 얼굴 등에 초기 윈도우를 설정하였다. 이 영역들을 추적함에 있어 영역들 사이에 폐색 영역을 회피하기 위해 가우시안 배경 모델(Gaussian Background Model)을 사용하여 각 추적 영역들을 제한하였다. 또한 폐색영역에 가중치를 부가하여 확률분포영상에서 중심값을 이동시켜 폐색 영역을 회피하였다. 실험 결과 다중 물체들에 강인한 추적을 보이고 유사한 색상을 갖는 물체의 폐색 시에도 우수한 결과를 보임을 확인하였다.
본 논문에서는 텔레비전 칼라영상에서 사람의 피부색을 기반으로 얼굴영역을 검출하는 방법을 제안하였다. 제안된 방법은 피부색을 샘플링하여 기준영상으로 놓고, 텔레비전 영상의 화소와 기준영상의 화소 사이의 유클리디안(Euclidean) 거리를 이용하여 얼굴후보 영역결정을 하였다. 얼굴 후보영역에서 눈 검출은 RGB 칼라를 CMY칼라 모델로 변환 하여 Y와 C 사이의 색차성분에 대한 평균값과 표준 편차를 이용하여 검출 하였다. 입술 영역은 RGB 칼라모델에서 YIQ 칼라 공간으로 변환 하여 Q 요소로 입술 영상을 검출 하였다. 얼굴영역 검출은 눈 영상과 입술 영상을 논리연산 하여 지식 기반으로 결정 하였다. 제안된 방법의 타당성을 입증하기 위하여 텔레비전 칼라영상에서 입력받은 정면 칼라 영상으로 실험한 결과, 얼굴영역 검출이 얼굴의 위치와 크기에 관계없이 검출됨을 보였다.
In this paper, we suggest a new system that detects abnormal region of skim. First, an illumination elimination algorithm which uses LAB color model is processed on input facial image to obtain robust facial image for illumination, and then gabor filter is processed to detect the reactivity of discontinuity. And last, the density-based spatial clustering of applications with noise(DBSCAN) algorithm is processed to classify areas of wrinkles, dots, and other skin diseases. This method allows the user to check the skin condition of the images taken in real life.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.