• 제목/요약/키워드: skin color detection

검색결과 291건 처리시간 0.039초

컬러 영상에서 HR비를 이용한 화소기반 피부색 검출 (Pixel-based Skin Color Detection using the Ratio of H to R in Color Images)

  • 이병선;이은주
    • Journal of Information Technology Applications and Management
    • /
    • 제12권1호
    • /
    • pp.231-239
    • /
    • 2005
  • This paper describes a new algorithm for pixel-based skin color detection to differentiate human form in color images by the ratio of R to H. In order to detect skin color efficiently, we examine the distribution of the R, G and B color elements combining to constitute the skin color in various color images. It shows that R is located in a narrower area than G and B on the RGB color space. And skin color is more related to R than G and B. Meanwhile, when the color image is transformed to the HSI color space, the S is variously changed in accordance with skin colors. The I is changed in accordance with the quantity and angle of light. But the H is less influenced by other conditions except for color. On the basis of the aforementioned study, we propose that the threshold for skin color detection is decided by the ratio of R to H. The proposed method narrows down the range of threshold, detects more skin color and reduces mis-detection of skin color in comparison to detection by R or H. In experimentation. it shows that the proposed algorithm overcomes changes of brightness and color to detect skin color in color images.

  • PDF

강건한 다인종 얼굴 검출을 위한 통합 3D 피부색 모델 (Integrated 3D Skin Color Model for Robust Skin Color Detection of Various Races)

  • 박경미;김영봉
    • 한국콘텐츠학회논문지
    • /
    • 제9권5호
    • /
    • pp.1-12
    • /
    • 2009
  • 올바른 피부색 검출은 사람의 얼굴 검출 및 동작 분석에서 매우 중요한 전처리과정에 속한다. 피부 검출은 일반적으로 화소의 칼라 공간을 Non-RGB로 변형하고, 피부색의 조명 요소를 제거한 다음 피부색 분포 모델에 의해 Skin과 Non-Skin으로 분류하는 3단계로 진행된다. 이는 피부색 검출이 칼라 공간, 조명 요소의 존재 여부, 피부 모델링 방법에 따라 수행 성능에 많은 영향을 받기 때문이다. 본 연구에서는 조명 조건에 따라 피부색 모델의 범위에 차이가 있다는 사실에 기초하여 다양한 조명 조건과 복잡한 배경을 가진 영상에서 효과적으로 다인종의 피부색을 분류해내 기 위한 3차원 피부색 모델을 제시하고자 한다. 제안된 피부색 모델은 화소의 칼라 공간을 YCbCr공간으로 변형하고, 각 요소(Y, Cb, Cr) 값에 의한 3차원 피부색 모델을 형성한다. 다인종의 피부색을 함께 분할하기 위해 인종(백인, 흑인, 황인)별 피부색 모델을 먼저 생성한 후 각각의 모델에서 피부색 확률에 따라 결합한 다인종을 위한 통합 모델을 생성하였다. 또한 우리는 적은 양의 훈련 데이터로 피부색 영역을 올바르게 검출할 수 있도록 여러 단계의 피부색 영역을 설정하였다.

Skin Segmentation Using YUV and RGB Color Spaces

  • Al-Tairi, Zaher Hamid;Rahmat, Rahmita Wirza;Saripan, M. Iqbal;Sulaiman, Puteri Suhaiza
    • Journal of Information Processing Systems
    • /
    • 제10권2호
    • /
    • pp.283-299
    • /
    • 2014
  • Skin detection is used in many applications, such as face recognition, hand tracking, and human-computer interaction. There are many skin color detection algorithms that are used to extract human skin color regions that are based on the thresholding technique since it is simple and fast for computation. The efficiency of each color space depends on its robustness to the change in lighting and the ability to distinguish skin color pixels in images that have a complex background. For more accurate skin detection, we are proposing a new threshold based on RGB and YUV color spaces. The proposed approach starts by converting the RGB color space to the YUV color model. Then it separates the Y channel, which represents the intensity of the color model from the U and V channels to eliminate the effects of luminance. After that the threshold values are selected based on the testing of the boundary of skin colors with the help of the color histogram. Finally, the threshold was applied to the input image to extract skin parts. The detected skin regions were quantitatively compared to the actual skin parts in the input images to measure the accuracy and to compare the results of our threshold to the results of other's thresholds to prove the efficiency of our approach. The results of the experiment show that the proposed threshold is more robust in terms of dealing with the complex background and light conditions than others.

Performance of Human Skin Detection in Images According to Color Spaces

  • Kim, Jun-Yup;Do, Yong-Tae
    • 한국정보기술응용학회:학술대회논문집
    • /
    • 한국정보기술응용학회 2005년도 6th 2005 International Conference on Computers, Communications and System
    • /
    • pp.153-156
    • /
    • 2005
  • Skin region detection in images is an important process in many computer vision applications targeting humans such as hand gesture recognition and face identification. It usually starts at a pixel-level, and involves a pre-process of color spae transformation followed by a classification process. A color space transformation is assumed to increase separability between skin classes and other classes, to increase similarity among different skin tones, and to bring a robust performance under varying imaging conditions, without any complicated analysis. In this paper, we examine if the color space transformation actually brings those benefits to the problem of skin region detection on a set of human hand images with different postures, backgrounds, people, and illuminations. Our experimental results indicate that color space transfomation affects the skin detection performance. Although the performance depends on camera and surround conditions, normalized [R, G, B] color space may be a good choice in general.

  • PDF

살색을 이용한 고속 얼굴검출 알고리즘의 개발 (High Speed Face Detection Using Skin Color)

  • 한영신;박동식;이칠기
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(3)
    • /
    • pp.173-176
    • /
    • 2002
  • This paper describes an implementation of fast face detection algorithm. This algorithm can robustly detect human faces with unknown sizes and positions in complex backgrounds. This paper provides a powerful face detection algorithm using skin color segmenting. Skin Color is modeled by a Gaussian distribution in the HSI color space among different persons within the same race, Oriental. The main feature of the Algorithm is achieved face detection robust to illumination changes and a simple adaptive thresholding technique for skin color segmentation is employed to achieve robust face detection.

  • PDF

피부색 모델 기반의 효과적인 얼굴 검출 연구 (Efficient Face Detection based on Skin Color Model)

  • 백영현
    • 대한전자공학회논문지SP
    • /
    • 제45권6호
    • /
    • pp.38-43
    • /
    • 2008
  • 피부색 정보는 컬러영상에 포함된 얼굴영역을 검출하는 중요한 요소이다. 피부색 정보로 부터 생성된 통계 피부색 모델을 이용하여 얼굴영역을 검출할 수 있다. 하지만 다른 피부색 부분이 포함되어 있는 컬러영상에서는 일반적인 통계 피부색 모델만으로 정확한 얼굴영역 검출을 할 수 없는 단점을 가진다. 본 논문에서는 다른 피부색 부분이 포함되어 있는 다양한 컬러 영상에서 얼굴영역만을 정확히 검출하기 위한 방법을 제안한다. 제안된 방법은 YCbCr 피부 컬러 모델기반의 피부색 가우시안 분포를 적용하여 얼굴 후보영역 설정 하였고, 영상내의 잡음 부분과 얼굴 영역이외의 부분을 제거하기 위해 수학적 형태학을 적용하였다. 그리고 Haar-like 특성을 이용하여 정확한 얼굴 검출을 수행하였다. 모의실험 결과 제안된 방법이 목이나 팔과 같이 유사한 피부색을 포함한 영상과 다양한 크기의 영상에서도 효과적인 얼굴영역 검출하는 우수함을 보였다.

얼굴 검출을 위한 피부색 추출 과정에서 피부색 손실 영역 개선에 관한 연구 (A Study on the Improvement of Skin Loss Area in Skin Color Extraction for Face Detection)

  • 김동인;이강성;한군희;이상훈
    • 한국융합학회논문지
    • /
    • 제10권5호
    • /
    • pp.1-8
    • /
    • 2019
  • 본 논문에서는 피부색 추출과정에서 그림자나 조명에 의해 얼굴 표면이 손실되어 피부색 추출이 되지 않는 문제점을 해결하기 위하여 개선된 얼굴 피부색 추출 방법을 제안하였다. 기존의 HSV를 이용한 방법은 조명에 의해 얼굴표면이 밝게 비춰지는 경우에 피부색 추출과정에서 피부색 요소가 손실되기 때문에 얼굴표면에 손실 영역이 나타나게 된다. 이러한 문제점을 해결하기 위해 피부색을 추출한 뒤 손실된 피부 요소 중 HSV 색공간에서 피부색의 H 채널 값 범위에 있는 요소들을 판단하여 손실된 부분의 좌표와 원본 이미지 좌표의 결합을 통해 피부색이 손실되는 부분을 최소화 하는 방법을 제안하였다. 얼굴 검출 과정으로는 추출한 피부색 이미지에서 질감 특징정보를 나타내는 LBP Cascade Classifier를 이용하여 얼굴을 검출하였다. 실험결과 제안하는 방법이 기존의 RGB와 HSV 피부색 추출과 LBP Cascade Classifier 방법을 이용한 얼굴검출보다 검출률과 정확도는 각각 5.8%, 9.6% 향상된 결과를 보였다.

색 왜곡 영상에서의 강건한 피부영역 탐지 방법 (Robust Skin Area Detection Method in Color Distorted Images)

  • 황대동;이근수
    • 한국산학기술학회논문지
    • /
    • 제18권7호
    • /
    • pp.350-356
    • /
    • 2017
  • 실시간 인체 검출에 대한 관심이 높아짐에 따라 피부색을 통한 인체 검출에 대한 연구가 활발히 진행되고 있다. 하지만 대다수 기존 피부 탐지 방법은 정적인 피부색 모델을 이용하기 때문에 색 왜곡이 발생한 영상에서 낮은 탐지율을 보인다. 이러한 문제를 해결하기 위해 본 논문에서는 경사도 맵과 채도, YCbCr 공간의 Cb, Cr 요소를 퍼지로 분류하는 방법을 사용하여 피부영역을 탐지하는 기법을 제시한다. 제안하는 방법의 기본적인 절차는 경사도 맵 생성, 채도 맵 생성, CbCr 맵 생성, 퍼지 분류, 피부영역 이진화 순이다. 이 방법은 색상 이외의 특징을 이용하여 조명, 인종, 나이, 개인차 등에 상관없이 강건하게 피부를 탐지하는 것에 중점을 두고 있다. 색상 이외의 피부 특징은 비피부영역과의 경계가 모호하여 구분이 명확하지 않다. 이를 해결하기 위해 경사도, 채도와 색상 특징간의 관계를 소속함수로 정의하고 이를 이용하여 108가지의 퍼지 규칙을 생성하여 피부영역을 탐지한다. 제안한 방법의 검출 정확도는 86.35%로 기존 방법보다 2~5 % 우수함을 확인하였다.

실시간 영상에서 피부색상 정보와 Haar-Like Feature를 이용한 얼굴 검출 및 추적 (Face Detection and Tracking using Skin Color Information and Haar-Like Features in Real-Time Video)

  • 김동현;임재현;김대희;김태경;백준기
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.146-149
    • /
    • 2009
  • 실시간 영상에서 사람의 얼굴 검출은 얼굴 인식분야에 있어서 주요한 관심 분야 중의 하나이다. 본 논문에서는 실시간 입력되는 영상에서 피부 색상과 Haar-like feature를 이용한 얼굴 검출 및 추적 알고리듬을 제안한다. 제안된 알고리듬은 컬러 색 공간에서 피부색상과 특징점을 가지고 얼굴 영역 및 추적하였다. 실험 결과 실시간 영상에 대해 조명 변화 및 가림 현상에서 강건한 추적 결과를 얻을 수 있었다.

  • PDF

Non-parametric Density Estimation with Application to Face Tracking on Mobile Robot

  • Feng, Xiongfeng;Kubik, K.Bogunia
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.49.1-49
    • /
    • 2001
  • The skin color model is a very important concept in face detection, face recognition and face tracking. Usually, this model is obtained by estimating a probability density function of skin color distribution. In many cases, it is assumed that the underlying density function follows a Gaussian distribution. In this paper, a new method for non-parametric estimation of the probability density function, by using feed-forward neural network, is used to estimate the underlying skin color model. By using this method, the resulting skin color model is better than the Gaussian estimation and substantially approaches the real distribution. Applications to face detection and face ...

  • PDF