Journal of Information Technology Applications and Management
/
제12권1호
/
pp.231-239
/
2005
This paper describes a new algorithm for pixel-based skin color detection to differentiate human form in color images by the ratio of R to H. In order to detect skin color efficiently, we examine the distribution of the R, G and B color elements combining to constitute the skin color in various color images. It shows that R is located in a narrower area than G and B on the RGB color space. And skin color is more related to R than G and B. Meanwhile, when the color image is transformed to the HSI color space, the S is variously changed in accordance with skin colors. The I is changed in accordance with the quantity and angle of light. But the H is less influenced by other conditions except for color. On the basis of the aforementioned study, we propose that the threshold for skin color detection is decided by the ratio of R to H. The proposed method narrows down the range of threshold, detects more skin color and reduces mis-detection of skin color in comparison to detection by R or H. In experimentation. it shows that the proposed algorithm overcomes changes of brightness and color to detect skin color in color images.
올바른 피부색 검출은 사람의 얼굴 검출 및 동작 분석에서 매우 중요한 전처리과정에 속한다. 피부 검출은 일반적으로 화소의 칼라 공간을 Non-RGB로 변형하고, 피부색의 조명 요소를 제거한 다음 피부색 분포 모델에 의해 Skin과 Non-Skin으로 분류하는 3단계로 진행된다. 이는 피부색 검출이 칼라 공간, 조명 요소의 존재 여부, 피부 모델링 방법에 따라 수행 성능에 많은 영향을 받기 때문이다. 본 연구에서는 조명 조건에 따라 피부색 모델의 범위에 차이가 있다는 사실에 기초하여 다양한 조명 조건과 복잡한 배경을 가진 영상에서 효과적으로 다인종의 피부색을 분류해내 기 위한 3차원 피부색 모델을 제시하고자 한다. 제안된 피부색 모델은 화소의 칼라 공간을 YCbCr공간으로 변형하고, 각 요소(Y, Cb, Cr) 값에 의한 3차원 피부색 모델을 형성한다. 다인종의 피부색을 함께 분할하기 위해 인종(백인, 흑인, 황인)별 피부색 모델을 먼저 생성한 후 각각의 모델에서 피부색 확률에 따라 결합한 다인종을 위한 통합 모델을 생성하였다. 또한 우리는 적은 양의 훈련 데이터로 피부색 영역을 올바르게 검출할 수 있도록 여러 단계의 피부색 영역을 설정하였다.
Al-Tairi, Zaher Hamid;Rahmat, Rahmita Wirza;Saripan, M. Iqbal;Sulaiman, Puteri Suhaiza
Journal of Information Processing Systems
/
제10권2호
/
pp.283-299
/
2014
Skin detection is used in many applications, such as face recognition, hand tracking, and human-computer interaction. There are many skin color detection algorithms that are used to extract human skin color regions that are based on the thresholding technique since it is simple and fast for computation. The efficiency of each color space depends on its robustness to the change in lighting and the ability to distinguish skin color pixels in images that have a complex background. For more accurate skin detection, we are proposing a new threshold based on RGB and YUV color spaces. The proposed approach starts by converting the RGB color space to the YUV color model. Then it separates the Y channel, which represents the intensity of the color model from the U and V channels to eliminate the effects of luminance. After that the threshold values are selected based on the testing of the boundary of skin colors with the help of the color histogram. Finally, the threshold was applied to the input image to extract skin parts. The detected skin regions were quantitatively compared to the actual skin parts in the input images to measure the accuracy and to compare the results of our threshold to the results of other's thresholds to prove the efficiency of our approach. The results of the experiment show that the proposed threshold is more robust in terms of dealing with the complex background and light conditions than others.
한국정보기술응용학회 2005년도 6th 2005 International Conference on Computers, Communications and System
/
pp.153-156
/
2005
Skin region detection in images is an important process in many computer vision applications targeting humans such as hand gesture recognition and face identification. It usually starts at a pixel-level, and involves a pre-process of color spae transformation followed by a classification process. A color space transformation is assumed to increase separability between skin classes and other classes, to increase similarity among different skin tones, and to bring a robust performance under varying imaging conditions, without any complicated analysis. In this paper, we examine if the color space transformation actually brings those benefits to the problem of skin region detection on a set of human hand images with different postures, backgrounds, people, and illuminations. Our experimental results indicate that color space transfomation affects the skin detection performance. Although the performance depends on camera and surround conditions, normalized [R, G, B] color space may be a good choice in general.
This paper describes an implementation of fast face detection algorithm. This algorithm can robustly detect human faces with unknown sizes and positions in complex backgrounds. This paper provides a powerful face detection algorithm using skin color segmenting. Skin Color is modeled by a Gaussian distribution in the HSI color space among different persons within the same race, Oriental. The main feature of the Algorithm is achieved face detection robust to illumination changes and a simple adaptive thresholding technique for skin color segmentation is employed to achieve robust face detection.
피부색 정보는 컬러영상에 포함된 얼굴영역을 검출하는 중요한 요소이다. 피부색 정보로 부터 생성된 통계 피부색 모델을 이용하여 얼굴영역을 검출할 수 있다. 하지만 다른 피부색 부분이 포함되어 있는 컬러영상에서는 일반적인 통계 피부색 모델만으로 정확한 얼굴영역 검출을 할 수 없는 단점을 가진다. 본 논문에서는 다른 피부색 부분이 포함되어 있는 다양한 컬러 영상에서 얼굴영역만을 정확히 검출하기 위한 방법을 제안한다. 제안된 방법은 YCbCr 피부 컬러 모델기반의 피부색 가우시안 분포를 적용하여 얼굴 후보영역 설정 하였고, 영상내의 잡음 부분과 얼굴 영역이외의 부분을 제거하기 위해 수학적 형태학을 적용하였다. 그리고 Haar-like 특성을 이용하여 정확한 얼굴 검출을 수행하였다. 모의실험 결과 제안된 방법이 목이나 팔과 같이 유사한 피부색을 포함한 영상과 다양한 크기의 영상에서도 효과적인 얼굴영역 검출하는 우수함을 보였다.
본 논문에서는 피부색 추출과정에서 그림자나 조명에 의해 얼굴 표면이 손실되어 피부색 추출이 되지 않는 문제점을 해결하기 위하여 개선된 얼굴 피부색 추출 방법을 제안하였다. 기존의 HSV를 이용한 방법은 조명에 의해 얼굴표면이 밝게 비춰지는 경우에 피부색 추출과정에서 피부색 요소가 손실되기 때문에 얼굴표면에 손실 영역이 나타나게 된다. 이러한 문제점을 해결하기 위해 피부색을 추출한 뒤 손실된 피부 요소 중 HSV 색공간에서 피부색의 H 채널 값 범위에 있는 요소들을 판단하여 손실된 부분의 좌표와 원본 이미지 좌표의 결합을 통해 피부색이 손실되는 부분을 최소화 하는 방법을 제안하였다. 얼굴 검출 과정으로는 추출한 피부색 이미지에서 질감 특징정보를 나타내는 LBP Cascade Classifier를 이용하여 얼굴을 검출하였다. 실험결과 제안하는 방법이 기존의 RGB와 HSV 피부색 추출과 LBP Cascade Classifier 방법을 이용한 얼굴검출보다 검출률과 정확도는 각각 5.8%, 9.6% 향상된 결과를 보였다.
실시간 인체 검출에 대한 관심이 높아짐에 따라 피부색을 통한 인체 검출에 대한 연구가 활발히 진행되고 있다. 하지만 대다수 기존 피부 탐지 방법은 정적인 피부색 모델을 이용하기 때문에 색 왜곡이 발생한 영상에서 낮은 탐지율을 보인다. 이러한 문제를 해결하기 위해 본 논문에서는 경사도 맵과 채도, YCbCr 공간의 Cb, Cr 요소를 퍼지로 분류하는 방법을 사용하여 피부영역을 탐지하는 기법을 제시한다. 제안하는 방법의 기본적인 절차는 경사도 맵 생성, 채도 맵 생성, CbCr 맵 생성, 퍼지 분류, 피부영역 이진화 순이다. 이 방법은 색상 이외의 특징을 이용하여 조명, 인종, 나이, 개인차 등에 상관없이 강건하게 피부를 탐지하는 것에 중점을 두고 있다. 색상 이외의 피부 특징은 비피부영역과의 경계가 모호하여 구분이 명확하지 않다. 이를 해결하기 위해 경사도, 채도와 색상 특징간의 관계를 소속함수로 정의하고 이를 이용하여 108가지의 퍼지 규칙을 생성하여 피부영역을 탐지한다. 제안한 방법의 검출 정확도는 86.35%로 기존 방법보다 2~5 % 우수함을 확인하였다.
실시간 영상에서 사람의 얼굴 검출은 얼굴 인식분야에 있어서 주요한 관심 분야 중의 하나이다. 본 논문에서는 실시간 입력되는 영상에서 피부 색상과 Haar-like feature를 이용한 얼굴 검출 및 추적 알고리듬을 제안한다. 제안된 알고리듬은 컬러 색 공간에서 피부색상과 특징점을 가지고 얼굴 영역 및 추적하였다. 실험 결과 실시간 영상에 대해 조명 변화 및 가림 현상에서 강건한 추적 결과를 얻을 수 있었다.
The skin color model is a very important concept in face detection, face recognition and face tracking. Usually, this model is obtained by estimating a probability density function of skin color distribution. In many cases, it is assumed that the underlying density function follows a Gaussian distribution. In this paper, a new method for non-parametric estimation of the probability density function, by using feed-forward neural network, is used to estimate the underlying skin color model. By using this method, the resulting skin color model is better than the Gaussian estimation and substantially approaches the real distribution. Applications to face detection and face ...
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.