• Title/Summary/Keyword: skew element

Search Result 119, Processing Time 0.024 seconds

CHARACTERIZATIONS OF ELEMENTS IN PRIME RADICALS OF SKEW POLYNOMIAL RINGS AND SKEW LAURENT POLYNOMIAL RINGS

  • Cheon, Jeoung-Soo;Kim, Eun-Jeong;Lee, Chang-Ik;Shin, Yun-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.277-290
    • /
    • 2011
  • We show that the ${\theta}$-prime radical of a ring R is the set of all strongly ${\theta}$-nilpotent elements in R, where ${\theta}$ is an automorphism of R. We observe some conditions under which the ${\theta}$-prime radical of coincides with the prime radical of R. Moreover we characterize elements in prime radicals of skew Laurent polynomial rings, studying (${\theta}$, ${\theta}^{-1}$)-(semi)primeness of ideals of R.

Bending analysis of composite skew cylindrical shell panel

  • Haldar, Salil;Majumder, Aditi;Kalita, Kanak
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.125-131
    • /
    • 2019
  • A nine node isoparametric plate bending element is used for bending analysis of laminated composite skew cylindrical shell panels. Both thick and thin shell panels are solved. Rotary inertia and shear deformation are incorporated by considering first order shear deformation theory. The analysis is performed considering shallow shell theory. Both shallow and moderately deep skew cylindrical shells are investigated. Skew cylindrical shell panels having different thickness ratios (h/a), radius to length ratios (R/a), ply angle orientations, number of layers, aspect ratio (b/a), boundary conditions and various loading (concentrated, uniformly distributed, linear varying and doubly sinusoidal varying) conditions are analysed. Various new results are presented.

Time domain buffeting analysis of long suspension bridges under skew winds

  • Liu, G.;Xu, Y.L.;Zhu, L.D.
    • Wind and Structures
    • /
    • v.7 no.6
    • /
    • pp.421-447
    • /
    • 2004
  • This paper presents a time domain approach for predicting buffeting response of long suspension bridges under skew winds. The buffeting forces on an oblique strip of the bridge deck in the mean wind direction are derived in terms of aerodynamic coefficients measured under skew winds and equivalent fluctuating wind velocities with aerodynamic impulse functions included. The time histories of equivalent fluctuating wind velocities and then buffeting forces along the bridge deck are simulated using the spectral representation method based on the Gaussian distribution assumption. The self-excited forces on an oblique strip of the bridge deck are represented by the convolution integrals involving aerodynamic impulse functions and structural motions. The aerodynamic impulse functions of self-excited forces are derived from experimentally measured flutter derivatives under skew winds using rational function approximations. The governing equation of motion of a long suspension bridge under skew winds is established using the finite element method and solved using the Newmark numerical method. The proposed time domain approach is finally applied to the Tsing Ma suspension bridge in Hong Kong. The computed buffeting responses of the bridge under skew winds during Typhoon Sam are compared with those obtained from the frequency domain approach and the field measurement. The comparisons are found satisfactory for the bridge response in the main span.

Skew Analysis of Synchronous Reluctance Motor Using Equivalent Magnetic Circuit Method (등가자기회로법을 이용한 동기형 릴럭턴스 전동기의 스큐해석)

  • Ahn, Joon-Seon;Lim, Seung-Bin;Kim, Sol;Lim, Seong-Yeop;Kwon, Sam-Young;Lee, Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.3
    • /
    • pp.123-130
    • /
    • 2006
  • This paper presents characteristics analysis of skewed Synchronous Reluctance Motor using equivalent magnetic circuit and compares with the result of Finite Element Method. Torque ripple must be reduced, because it is producing noise and vibration. There is many kinds of method to reduce torque ripple, but generally we apply skewing stator or rotor. The 2D Finite Element Method(FEM) or 3D FEM is used to analyze the motor, since skew influence the average torque in the motor. However, the FEM takes much time in spite of the advanced computer and numerical technique. This paper will analyze characteristics of skewed synchronous reluctance motor using equivalent magnetic circuit.

The research to improve Thrust and Levitation Force characteristic of Linear Synchronous Motor for High-speed Maglev train (초고속 자기부상열차용 선형 동기 전동기의 추력 및 부상력 특성 개선을 위한 연구)

  • Hong, Hyun-Seok;Oh, Se-Young;Han, Jung-Ho;Lee, Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.75-84
    • /
    • 2014
  • A linear synchronous motor (Linear Synchronous Motor, under LSM) is suitable for Maglev train. This is 500km/h or more for running high-speed propulsion system of high-efficiency, high-output characteristics. Also, as high-speed running, it is needed solution to reduce output ripple component cause bad riding like noise and vibration. So this paper was designed 500km/h-class Maglev train and analyzed characteristics of the LSM base model using finite element analysis method. Further, improved model is designed to improve characteristics of thrust and levitation force by enforcing design parameters analysis and sensitivity analysis. And it was applied skew on field in order to reduce the ripple component still remaining. Skew interpretation of the two-dimensional is proposed and this is verified by carrying out three-dimensional finite element analysis comparing two values. It proved to be valid of skew of the two-dimensional analysis.

ON CLEAN AND NIL CLEAN ELEMENTS IN SKEW T.U.P. MONOID RINGS

  • Hashemi, Ebrahim;Yazdanfar, Marzieh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.57-71
    • /
    • 2019
  • Let R be an associative ring with identity, M a t.u.p. monoid with only one unit and ${\omega}:M{\rightarrow}End(R)$ a monoid homomorphism. Let R be a reversible, M-compatible ring and ${\alpha}=a_1g_1+{\cdots}+a_ng_n$ a non-zero element in skew monoid ring $R{\ast}M$. It is proved that if there exists a non-zero element ${\beta}=b_1h_1+{\cdots}+b_mh_m$ in $R{\ast}M$ with ${\alpha}{\beta}=c$ is a constant, then there exist $1{\leq}i_0{\leq}n$, $1{\leq}j_0{\leq}m$ such that $g_{i_0}=e=h_{j_0}$ and $a_{i_0}b_{j_0}=c$ and there exist elements a, $0{\neq}r$ in R with ${\alpha}r=ca$. As a consequence, it is proved that ${\alpha}{\in}R*M$ is unit if and only if there exists $1{\leq}i_0{\leq}n$ such that $g_{i_0}=e$, $a_{i_0}$ is unit and aj is nilpotent for each $j{\neq}i_0$, where R is a reversible or right duo ring. Furthermore, we determine the relation between clean and nil clean elements of R and those elements in skew monoid ring $R{\ast}M$, where R is a reversible or right duo ring.

A Study on Wheel Load Distribution Factors of Skew Steel Box Girder Bridges (강상자형 사교의 윤하중분배계수)

  • Seo, Chang-Bum;Song, Jae-Ho;Kim, Il-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.4 s.56
    • /
    • pp.148-158
    • /
    • 2009
  • Firstly the problems of existing foreign code concerning wheel load distribution factor for skew box girder bridges have been examined, and the main parameters which have effects on wheel load distribution factors are evaluated in this study. Further finite element analyses on various skew steel box girder bridges are carried out. Based on the analysis results, formulas to determine wheel load distribution factors are proposed using multiple regression analysis. It is found when using the proposed formulas in this study weak points of existing specifications could be improved and also time spent at structural analysis should be saved a lot, so that the validity and practicality could be verified.

Free vibration analysis of stiffened laminated plates using layered finite element method

  • Guo, Meiwen;Harik, Issam E.;Ren, Wei-Xin
    • Structural Engineering and Mechanics
    • /
    • v.14 no.3
    • /
    • pp.245-262
    • /
    • 2002
  • The free vibration analysis of stiffened laminated composite plates has been performed using the layered (zigzag) finite element method based on the first order shear deformation theory. The layers of the laminated plate is modeled using nine-node isoparametric degenerated flat shell element. The stiffeners are modeled as three-node isoparametric beam elements based on Timoshenko beam theory. Bilinear in-plane displacement constraints are used to maintain the inter-layer continuity. A special lumping technique is used in deriving the lumped mass matrices. The natural frequencies are extracted using the subspace iteration method. Numerical results are presented for unstiffened laminated plates, stiffened isotropic plates, stiffened symmetric angle-ply laminates, stiffened skew-symmetric angle-ply laminates and stiffened skew-symmetric cross-ply laminates. The effects of fiber orientations (ply angles), number of layers, stiffener depths and degrees of orthotropy are examined.

A Study on the V-skew Model for Minimization of Detent Force and Lateral Force in PMLSM (PMLSM의 디텐트력 및 Lateral Force 최소화를 위한 V-skew 모델에 관한 연구)

  • Hwang, In-Cheol;Jang, Ki-Bong;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.390-397
    • /
    • 2008
  • Permanent Magnet Linear Synchronous Motor (PMLSM) has high efficiency, high energy density, and high control-ability. But, the detent force always is produced by the structure of slot-teeth. There are the disadvantages such as noise and vibration of the apparatuses are induced and the control ability is curtailed because detent force acts as thrust ripple. Therefore, the detent force reduction is an essential requirement in PMLSM. Generally, the method, skewing permanent magnet or slot-teeth, is used to reduce the detent force. But the thrust is decreased at the same time. If permanent magnet is skewed, the lateral force which operates as the perpendicular direction of skew direction is generated in linear guide of PMLSM. So, V-skew model is proposed for the reduction of lateral force. The lateral force acts as braking force in linear motion guide, and it has bad influence to the characteristics of PMLSM. However, these problems will not be solved by 2-dimensional Finite Element Analysis (FEA). So, in this paper 3-dimensional FEA is applied to analyze the PMLSM where permanent magnet is skewed and has overhang. The detent force and thrust characteristics considering skew and overhang effects of permanent magnet are analyzed by 3-dimensional FEA and the results are compared with experimental values to verify the propriety of analysis.

Buffeting response of long suspension bridges to skew winds

  • Xu, Y.L.;Zhu, L.D.;Xiang, H.F.
    • Wind and Structures
    • /
    • v.6 no.3
    • /
    • pp.179-196
    • /
    • 2003
  • A long suspension bridge is often located within a unique wind environment, and strong winds at the site seldom attack the bridge at a right angle to its long axis. This paper thus investigates the buffeting response of long suspension bridges to skew winds. The conventional buffeting analysis in the frequency domain is first improved to take into account skew winds based on the quasi-steady theory and the oblique strip theory in conjunction with the finite element method and the pseudo-excitation method. The aerodynamic coefficients and flutter derivatives of the Tsing Ma suspension bridge deck under skew winds, which are required in the improved buffeting analysis, are then measured in a wind tunnel using specially designed test rigs. The field measurement data, which were recorded during Typhoon Sam in 1999 by the Wind And Structural Health Monitoring System (WASHMS) installed on the Tsing Ma Bridge, are analyzed to obtain both wind characteristics and buffeting responses. Finally, the field measured buffeting responses of the Tsing Ma Bridge are compared with those from the computer simulation using the improved method and the aerodynamic coefficients and flutter derivatives measured under skew winds. The comparison is found satisfactory in general.