• Title/Summary/Keyword: skeletal muscle

Search Result 1,203, Processing Time 0.034 seconds

Cortisone 및 Calcium이 국소마취약의 Acetylcholine 근련축억제효과에 미치는 영향

  • Baei, Yu-Hong;Hahm, Jhong-Dai;Lee, Sang-Sin
    • The Journal of the Korean dental association
    • /
    • v.12 no.6
    • /
    • pp.419-423
    • /
    • 1974
  • The authors have investigated the roles of cortisone and calcium on the depressive effects of local anesthetics on the acetylcholine-induced skeletal muscle contraction in frog. The results are as follows. 1. Tetracaine, cocaine, lidocaine and procaine decreased the acetylcholine-induced skeletal muscle contraction. 2. Cortisone increased the depressive effects of local anesthetics on the acetyl-choline-induced skeletal muscle contraction. 3. There was a tendency that in high calcium concentration, the depressive effects of cocaine and lidocaine on acetylcholine-induced skeletal muscle contraction were increased.

  • PDF

Effect of Carrageenan on the Tendon of Skeletal Muscle of the Rat

  • Hong Gi-Youn;Park Seung-Taeck;Jekal Seung-Joo;Lee Kang-Chang
    • Biomedical Science Letters
    • /
    • v.10 no.3
    • /
    • pp.259-262
    • /
    • 2004
  • The aim of present study was to examine the effect of carrageenan on the tendon of skeletal muscle of rat. The tendon damage was induced by injection of carrageenan into skeletal hind muscle of rats. Rats were killed on 48 hours after carrageenan injection. The resulting tendons were fixed with 10% neutral buffered formalin (NBF), dehydrated, embedded, sectioned by 4 μm, and stained by phosphotungstic acid hematoxylin (PTAH) or hematoxylin-eosin (H-E). Carrageenan induced the segregation of tendon fibers, intratendinous cleft, segregation of muscle cell group, wave arrangement of tendon fiber. The results suggest that carrageenan induced tendon damage of rat's skeletal muscle by morphological changes.

  • PDF

A Digital Signal Processing System for Analysis of Skeletal Muscle EMG Signal (골격근의 근전도 신호 분석을 위하 디지탈 신호처리 시스템의 설계)

  • 전철완
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.155-164
    • /
    • 1996
  • In the clinical environment, measurements of some characteristics of the skeletal muscle are currently used to assess the severity of a neuromuscular disease or in some cases to assist in making a diagnosis. But a quantitative method of evaluation has not yet been introduced satisfactorily. In this paper, the skeletal EMG(biceps muscle, masseter muscle) analysis has been processed both in the time and in the frequency domain by designing the digital signal processing system based on pentium PC and transputer (IMS 7805). The experiment have been performed in five normal subjects, and various parameters have been statistically tested and compare4 As a results, the effective parameters obtained for the evaluation of skeletal EMG electrical activity are turn analysis, MiTi, MiTa, IEMG, PDF in the time domain, and are mean frequency, median frequency, skewness, kurtosis, muscle fatigue slope in the frequency domain. The designed H/W and S/W in this study can be used effectively for the establishment of EMG data base and for clinical research.

  • PDF

Coexistence of Age-related Loss of Skeletal Muscle Mass and Obesity in Korean Men in Their Thirties: Understanding Incidence Rate and Key Influencing Elements

  • Jongseok Hwang
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.18 no.4
    • /
    • pp.37-45
    • /
    • 2023
  • PURPOSE: The coexistence of age-related skeletal muscle mass loss and obesity poses a substantial health risk for individuals because it combines the detrimental effects of muscle mass reduction associated with aging and the health complications from obesity. This study aimed to identify the incidence rate and key influencing elements among Korean men in their thirties. METHODS: A cross-sectional study involving 934 male participants was performed using complex sampling analysis. Various influencing elements were investigated, including age, height, weight, body mass index, waist circumference, skeletal muscle mass index, smoking and drinking behaviors, systolic and diastolic blood pressure, fasting glucose levels, triglyceride, and cholesterol levels. RESULTS: The incidence rate was 2.90%. The key influencing elements were age, height, weight, body mass index, waist circumference, skeletal muscle index, systolic blood pressure, fasting glucose, triglyceride, and total cholesterol (p < .05). CONCLUSION: This study identified the incidence rate and key influencing element for CALSMO among Korean younger community-dwelling men.

Association between Vibration Exposure and Skeletal Muscle Mass Index in a Single University Hospital Health Check-up (일개 대학 병원 건강 검진 수검자에서 진동 노출과 골격근 지수의 관련성)

  • Park, Young Sook;Chae, Chang Ho
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.3
    • /
    • pp.313-320
    • /
    • 2020
  • Objectives: The aim of this study is to evaluate the association between vibration exposure and skeletal muscle mass index through a single university health check-up. Methods: We used data from 134,067 male subjects who received a general health check-up or vibration exposure health check-up out of the 1,515,322 people who underwent medical check-up at a local university hospital from 2002 to 2018. Pearson correlation analysis was conducted for comparing the association between skeletal muscle mass index and demographic and hematological variables in both groups. Mixed linear model analysis after controlling demographic and hematological variables was used to analyze the differences in skeletal muscle mass index between groups at every visit over 10 years. Results: In the Pearson correlation test, the variables that showed different results when comparing the two groups were C-reactive protein (p=0.001) and glycated hemoglobin (p=0.002) in the vibration exposure group and erythrocyte sedimentation rate (p<0.001) and vitamin D (p<0.001) in the general group. After the adjustment of demographic and hematologic variables, the skeletal muscle mass index at every visit was markedly decreased in the vibration exposure group (p<0.001). Conclusions: In the vibration exposure group, the skeletal muscle mass index showed a tendency to decrease markedly over time compared to the general health check-up group, which showed that C-reactive protein and glycated hemoglobin would have an influence on skeletal muscle index in male workers exposed to vibration.

Protein Expression in Pig Species Longissimus dorsi Muscles among Different Breeds and Growth Stages (돼지의 품종 및 성장 단계에 따른 등심조직의 단백질 발현 양상 비교, 분석)

  • Kim, Byung-Uk;Kim, Sam-Woong;Hong, Yeon-Hee;Jeong, Mi-Ae;Ryu, Yeon-Sun;Park, Hwa-Chun;Jung, Jong-Hyun;Kwon, Young-Min;Choi, In-Soon;Lee, Sang-Suk;Kim, Chul-Wook;Cho, Kwang-Keun
    • Journal of Life Science
    • /
    • v.22 no.6
    • /
    • pp.713-722
    • /
    • 2012
  • When proteins extracted from longissimus dorsi muscles of Landrace and Berkshire at the finishing stage were compared by 2-DE, the Landrace demonstrated a quantitative increase in proteins related to slow skeletal muscle function, such as serum albumin precursor, troponin T (slow skeletal muscle; sTnT) and myoglobin. In contrast, the Berkshire exhibited comparatively elevated enzymes involved in metabolic pathways, fast skeletal muscle function, and energy production, such as heat shock 27-kDa protein (HSP27)-1, TnT (fast skeletal muscle; fTnT), muscle creatine kinase, phosphoglucomutase 1 (PGM1), triosephosphate isomerase (Tpi1) and adenylate kinase isoenzyme 1 (AK1). When compared to growing Berkshire, finishing Berkshire showed increased levels of aldehyde dehydrogenase 1 family, member L1 (ALDHL1), and muscle creatine kinase. In contrast, the growing Berkshire muscle had elevated levels of HSP27-1, sTnT, fTnT, serum albumin precursor, PGM1, AK1, and Tpi 1 as compared to the finishing Berkshire. The Landrace longissimus dorsi muscle may be composed of slower skeletal muscle, whereas Berkshire is composed of a faster skeletal muscle. The uniquely elevated quantities of proteins involved in skeletal muscle function, energy metabolism, and cytoskeleton function in the growing Berkshire indicate that these factors support growth and maintenance during the growing stage when compared with the finishing Berkshire.

Effect and Response of Skeletal Muscle Cells on Electrical Stimulation Condition (전기자극 조건에 따른 근육 세포에 미치는 영향과 반응)

  • Seo, Hyung Woo;Shin, Hyun Young;Lee, Hyun-Ju;Tae, Ki-Sik;Kim, Minseok S.
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.308-312
    • /
    • 2017
  • Skeletal muscle function plays a very important role in quality of life. However, skeletal muscle causes functional decline under aging or some diseases. Exercise and muscle training are good solutions to delay sarcopenia, but there are limitations to those who are uncomfortable in exercise. For this reason, alternative interventions for muscle sarcopenia are required, and many studies proved the increase of skeletal muscle mass by electrical stimulation. In conventional studies, however, mouse skeletal muscle cells have been mostly used in experiments to identify electrical stimulation conditions while human derived cells have not been frequently utilized in these studies. Stimulation used for rehabilitation has been uniformly treated without the consideration of aging. In addition, many studies have been used with conventional petri dish usually requiring many numbers of cells, which is not appropriate for rare. Moreover, they are not usually condition uniformity of electrical field. In this study, we have developed an electrical stimulation device which consumes a small amount of cells and can form a uniform electrical field. With the system, we analyzed the skeletal muscle differentiation and Myotube thickness depending on the electrical stimulation condition.

The relationship between muscle mitochondrial nutritional overloading and insulin resistance

  • Jeon, Jae-Han;Moon, Jun-Sung;Won, Kyu-Chang;Lee, In-Kyu
    • Journal of Yeungnam Medical Science
    • /
    • v.34 no.1
    • /
    • pp.19-28
    • /
    • 2017
  • The incidence of type 2 diabetes mellitus and insulin resistance is growing rapidly. Multiple organs including the liver, skeletal muscle and adipose tissue control insulin sensitivity coordinately, but the mechanism of skeletal muscle insulin resistance has not yet been fully elucidated. However, there is a growing body of evidence that lipotoxicity induced by mitochondrial dysfunction in skeletal muscle is an important mediator of insulin resistance. However, some recent findings suggest that skeletal mitochondrial dysfunction generated by genetic manipulation is not always correlated with insulin resistance in animal models. A high fat diet can provoke insulin resistance despite a coordinate increase in skeletal muscle mitochondria, which implies that mitochondrial dysfunction is not mandatory in insulin resistance. Furthermore, incomplete fatty acid oxidation by excessive nutrition supply compared to mitochondrial demand can induce insulin resistance without preceding impairment of mitochondrial function. Taken together we suggested that skeletal muscle mitochondrial overloading, not mitochondrial dysfunction, plays a pivotal role in insulin resistance.

Analysis of Differentially Expressed Proteins in Bovine Longissimus Dorsi and Biceps Femoris Muscles

  • Kim, S.M.;Park, M.Y.;Seo, K.S.;Yoon, D.H.;Lee, H.-G.;Choi, Y.J.;Kim, S.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.10
    • /
    • pp.1496-1502
    • /
    • 2006
  • Skeletal muscle contains slow and fast twitch fibers. These skeletal muscle fibers express type I and type II myosin, respectively, and these myosin isoenzymes have different ATPase activity. The aim of this study was to investigate protein profiles of bovine skeletal muscles by proteomic analysis. Fifty seven spots of distinct proteins were excised and characterized. The expression of sixteen spots was differed in longissimus dorsi muscle with a minimal 2-fold change compared to biceps femoris muscle. The majority of differentially expressed proteins belonged to metabolic regulation-related proteins such as glyceraldehyde 3-phosphate dehydrogenase, triosephosphate isomerase and carbonic anhydrase 3. The real time-PCR assay confirmed an increase or induction of specific genes: RGS12TS isoform, GAPDH, triosephosphate isomerase and carbonic anhydrase. These results suggest that the expression of metabolic proteins is under a specific control system in different bovine skeletal muscle. These observations could have significant implications for understanding the physiological regulation of bovine skeletal muscles.

Studies on the Effect of the Protein Constituents of Panax ginseng Root on Cultured Chick Embryonic Brain, Spinal Cord and Skeletal Muscle Cells (인삼 단백성분이 배양한 Chick Embryo의 뇌, 척수, 근육세포에 미치는 효과에 관한 연구)

  • Kim, Young-Choong;Han, Dae-Suk;Huh, Hoon;Ahn, Sang-Mee;Koo, Hyang-Ja
    • YAKHAK HOEJI
    • /
    • v.27 no.2
    • /
    • pp.109-116
    • /
    • 1983
  • The effect of protein constituents of six-year old fresh Panax ginseng root on chick embryonic brain, spinal cord and skeletal muscle dissociation cultures was studied. The protein constituents showed the enhancing effect on cultured brain, spinal cord and skeletal muscle cells. The neurite formation from brain and spinal cord cells and the outgrowth of neurite seemed to be enhanced by almost all of the protein constituents employed for this study. The maturation of skeletal muscle cells was stimulated by the protein constituents. This enhancing effect of the protein constituents was more vivid when brain, spinal cord and skeletal muscle cells were cultured with a medium which did not contain chick embryonic extracts known as an essential component for primary cell culture. The protein fraction having molecular weight range of 1,000 to 5,000 out of all the protein fractions employed for this study showed the most stimulatory effect on cultured brain, spinal cord and skeletal muscle cells.

  • PDF