• Title/Summary/Keyword: skarn

Search Result 109, Processing Time 0.028 seconds

U-Pb(SHRIMP) and K-Ar Age Dating of Intrusive Rocks and Skarn Minerals at the W-Skarn in Weondong Deposit (원동 중석 스카른대에서의 관입암류와 스카른광물에 대한 U-Pb(SHRIMP) 및 K-Ar 연대)

  • Park, Changyun;Song, Yungoo;Chi, Se Jung;Kang, Il-Mo;Yi, Keewook;Chung, Donghoon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.161-174
    • /
    • 2013
  • The geology of the weondong deposit area consists mainly of Cambro-Ordovician and Carboniferous-Triassic formations, and intruded quartz porphyry and dyke. The skarn mineralized zone in the weondong deposit is the most prospective region for the useful W-mineral deposits. To determine the skarn-mineralization age, U-Pb SHRIMP and K-Ar age dating methods were employed. The U-Pb zircon ages of quartz porphyry intrusion (WD-A) and feldspar porphyry dyke (WD-B) are 79.37 Ma and 50.64 Ma. The K-Ar ages of coarse-grained crystalline phlogopite (WD-1), massive phlogopite (WDR-1), phlogopite coexisted with skarn minerals (WD-M), and vein type illite (WD-2) were determined as $49.1{\pm}1.1$ Ma, $49.2{\pm}1.2$ Ma, $49.9{\pm}3.6$ Ma, and $48.3{\pm}1.1$ Ma, respectively. And the ages of the high uranium zircon of hydrothermally altered quartz porphyry (WD-C) range from 59.7 to 38.7 Ma, which dependson zircon's textures affected by hydrothermal fluids. It is regarded as the effect of some hydrothermal events, which may precipitate and overgrow the high-U zircons, and happen the zircon's metamictization and dissolution-reprecipitation reactions. Based on the K-Ar age datings for the skarn minerals and field evidences, we suggest that the timing of W-skarn mineralization in weondong deposit may be about 50 Ma. However, for the accurate timing of skarn mineralization in this area, the additional researches about the sequence of superposition at the skarn minerals and geological relationship between skarn deposits and dyke should be needed in the future.

Geology, Mineralization, and Age of the Pocheon Fe(-Cu) Skarn Deposit, Korea (한국 포천 철(-동) 스카른 광상의 지질, 광화작용 및 생성연대)

  • Kim, Chang Seong;Go, Ji Su;Choi, Seon-Gyu;Kim, Sang-Tae
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.317-333
    • /
    • 2014
  • The Pocheon iron (-copper) deposit, located at the northwestern part of the Precambrian Gyeonggi massif in South Korea, genetically remains controversial. Previous researchers advocated a metamorphosed (-exhalative) sedimentary origin for iron enrichment. In this study, we present strong evidences for skarnification and Fe mineralization, spatially associated with the Myeongseongsan granite. The Pocheon deposit is composed of diverse carbonate rocks such as dolostone and limestone which are partially overprinted by various hydrothermal skarns such as sodic-calcic, calcic and magnesian skarn. Iron (-copper) mineralization occurs mainly in the sodic-calcic skarn zone, locally superimposed by copper mineralization during retrograde stage of skarn. Age data determined on phlogopites from retrograde skarn stage by Ar-Ar and K-Ar methods range from $110.3{\pm}1.0Ma$ to $108.3{\pm}2.8Ma$, showing that skarn iron mineralization in the Pocheon is closely related to the shallow-depth Myeongseongsan granite (ca. 112 Ma). Carbon-oxygen isotopic depletions of carbonates in marbles, diverse skarns, and veins can be explained by decarbonation and interaction with an infiltrating hydrothermal fluids in open system ($XCO_2=0.1$). The results of sulfur isotope analyses indicate that both of sulfide (chalcopyrite-pyrite composite) and anhydrites in skarn have very high sulfur isotope values, suggesting the $^{34}S$ enrichment of the Pocheon sulfide and sulfate sulfur was derived from sulfate in the carbonate protolith. Shear zones with fractures in the Pocheon area channeled the saline, high $fO_2$ hydrothermal fluids, resulting in locally developed intense skarn alteration at temperature range of about $500^{\circ}$ to $400^{\circ}C$.

Spectroscopy of Skarn Minerals in Dangdu Pb-Zn Deposit and Assessment of Skarn Exploration Approaches Employing Portable Spectrometer (당두 연-아연 광상의 스카른 광물의 분광학적 특성과 휴대용 분광계의 스카른 탐사 가능성에 대한 고찰)

  • Jeong, Yong Sik;Yu, Jaehyung;Koh, Sang-Mo;Heo, Chul-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.135-147
    • /
    • 2014
  • This study analyzed spectroscopic methods for characterization of skarn minerals and sphalerite occurring in Dangdu ore deposit, and effectiveness of portable spectrometer in skarn mineral resources exploration is discussed. The spectroscopic analyses identified clinopyroxene, garnet, epidote, calcite, chlorite and sphalerite where spectral curves of clinopyroxene, garnet, epidote, and sphalerite show single mineral spectral characteristics and those of chlorite are in a mixed form with calcite and clinopyroxene. The assessment of spectroscopic analyses based on XRD analysis and microscopic observation reveals that clinopyroxene, garnet, epidote correspond well with more than 80% of detection, but sphalerite, chlorite, and calcite showed below 50% of detection rate. It is expected that skarn deposit exploration using a portable spectrometer is more effective in detection of clinopyroxene, garnet, and epidote whereas spectroscopic data of sphalerite, chlorite, and calcite needs to be utilized as a supplementary data. For the effective detection of chlorite and calcite, their content in the samples needs to be sufficient.

Geology and Mineral Resources of the Ogcheon Zone: Mineralization in the Pyeongchang-Jucheon Area, Kangwon-Do, Korea (옥천대(沃川帶)의 지질(地質) 및 광물자원(鑛物資源)에 관(關)한 연구(硏究) -평창(平昌)~주천지역(酒泉地域)에 있어서의 광화작용(鑛化作用)-)

  • Yun, Suckew;So, Chil Sop;Kim, Kyu Han
    • Economic and Environmental Geology
    • /
    • v.19 no.1
    • /
    • pp.1-18
    • /
    • 1986
  • A group of 16 $Zn+Pb{\pm}Ag$ deposits distributed in the Pyeongchang-Jucheon area, Kangwon-do, South Korea, were semi-regionally investigated. These deposits are contact metasomatic and/or hydrothermal replacement types hosted in the carbonate-dominated Cambrian Machari Formation and Ordovician Ibtanri Formation, and also in the carbonate interbeds of the Precambrian argillic metasediments. Comparing some key aspects of the individual deposits, it is found that the ore deposits hosted in the Machari and Ibtanri Formations are mostly of steeply-dipping chimneys with or without skarn minerals and are rich in Ag and Pb>Zn in metal grade whereas those occuring in the carbonate interbeds of the Precambrian argillic metasediments are gently-dipping conformable lenticular orebodies mostly with skarn minerals and are generally poor in Ag and Zn>Pb. The skarn mineralization in the area appears to have occurred during the lower Cretaceous (118.7Ma) to mid-Cretaceous (107.8Ma) time assumed from the K-Ar dates of the Dowon and Pyeongchang granites which are closely associated with the skarn ore deposits. The Rb/Ba/Sr ratios of these granites indicate that they are of strongly differentiated anomalous granites, and the Nb vs. Y and Rb vs. Y+Nb plots fall on the field of volcanic arc setting. The contact aureoles are zoned, giving the sequence in order of increasing distance from igneous contact: garnet-wollastonite, granet-wollastonite-clinopyroxene and garnet-clinopyroxene in such as the Pyeongchang and Yeonwol 114 areas. Electron microprobe analyses reveal that garnets and clinopyroxenes are generally low in Fe and Mn. Garnets are grossular to intermediate grandite except for those from the Ogryong exoskarn which are richer in andradite, pyrope and spessartine fractions. This indicates that the oxidation state of skarn-forming environment at Ogryong was higher than at the other deposits. Clinopyroxenes are mostly salitic except for those from the Ogryong exoskarn which involve considerable amounts of hedenbergite and johansenite fractions. The ${\delta}^{18}O$ value of Jurassic biotite granite at Ogryong is higher (+10.21‰) than that of Cretaceous one at Chodun (+8.41‰). The ${\delta}^{13}C$ values of carbonate rocks range from -0.89‰ to 0.68‰ and the ${\delta}^{18}O$ values range from +11.91‰ to + 19.34‰ indicating that these carbonate rocks are of marine origin. However, the ${\delta}^{13}C$ values of skarn calcite and vein calcite are -4.80‰ and -12.92‰, and the ${\delta}^{18}O$ values are +5.56‰ and +10.32‰, respectively, indicating that these calcites are of hydrothermal origin. The ${\delta}^{34}S$ values of sulfide minerals range from +4.4‰ to +8.7‰ suggesting that the sulfurs are of magmatic origin.

  • PDF

Geochemistry of Stable Isotope and Mineralization Age of Magnetite Deposits from the Janggun Mine, Korea (장군광산(將軍鑛山) 자철광상(磁鐵鑛床)의 광화시기(鑛化時期) 및 안정동위원소(安定同位元素) 지화학(地化學))

  • Lee, Hyun Koo;Lee, Chan Hee;Kim, Sang Jung
    • Economic and Environmental Geology
    • /
    • v.29 no.4
    • /
    • pp.411-419
    • /
    • 1996
  • The Janggun magnetite deposits occur as the lens-shaped magnesian skarn, magnetite and base-metal sulfide orebodies developed in the Cambrian Janggun Limestone Formation. The K-Ar age of alteration sericite indicates that the mineralization took place during late Cretaceous age (107 to 70 Ma). The ore deposition is divided into two stages as a early skarn and late hydrothermal stage. Mineralogy of skara stage (107 Ma) consists of iron oxide, base-metal sulfides, Mg-Fe carbonates and some Mg- and Ca-skarn minerals, and those of the hydrothermal stage (70 Ma) is deposited base-metal sulfides, some Sb- and Sn-sulfosalts, and native bismuth. Based on mineral assemblages, chemical compositions and thermodynamic considerations, the formation temperature, $-logfs_2$, $-logfo_2$ and pH of ore fluids progressively decreased and/or increased with time from skarn stage (433 to $345^{\circ}C$, 8.8 to 9.9 atm, 29.4 to 31.6 atm, and 6.1 to 7.2) to hydrothermal stage (245 to $315^{\circ}C$, 11.2 to 12.3 atm, 33.6 to 35.4 atm, and 7.3 to 7.8). The ${\delta}^{34}S$ values of sulfides have a wide range between 3.2 to 11.6‰. The calculated ${\delta}^{34}S_{H_2S}$ values of ore fluids are relatively homo-geneous as 2.9 to 5.4‰ (skam stage) and 8.7 to 13.5‰ (hydrothermal stage), which are a deep-seated igneous source of sulfur indicates progressive increasing due to the mixing of oxidized sedimentary sulfur with increasing paragenetic time. The ${\delta}^{13}C$ values of carbonates in ores range from -4.6 to -2.5‰. Oxygen and hydrogen isotope data revealed that the ${\delta}^{38}O_{H_2O}$ and ${\delta}D$ values of ore fluids decreased gradually with time from 14.7 to 1.8‰ and -85 to -73‰ (skarn stage), and from 11.1 to -0.2‰ and -87 to -80‰ (hydrothermal stage), respectively. This indicates that magmatic water was dominant during the early skarn mineralization but was progressively replaced by meteoric water during the later hydrothermal replacement.

  • PDF

Physicochemical Study of the Wondong Fe-Pb-Zn Skarn Deposit, Korea (원동(院洞) Fe-Pb-Zn 스카른광상의 물리화학적(物理化學的) 특징(特徵))

  • Chang, Ho Wan;Chang, Byung Uck
    • Economic and Environmental Geology
    • /
    • v.25 no.1
    • /
    • pp.1-16
    • /
    • 1992
  • The Wondong Fe-Pb-Zn deposit is located in endo and exoskarns formed along the contact between the Makkol limestone interbedding pelitic limestone of Ordovician age and quartz porphyry of Cretaceous age. At the Wondong mine, the endoskarn shows a discontinuous zonal arrangement from quartz porphyry to pelitic limestone as follows: unaltered quartz porphyry, weakly altered quartz porphyry zone, intensively altered pinkish quartz porphyry zone, garnet zone, and greyish white and fine-grained clinopyroxene zone developed at pelitic limestone side. In terms of chemical mass balance, intensively altered pinkish quartz porphyry relative to unaltered quartz porphyry shows substantial enrichments in $K_2O$, $Na_2O$, and HREE and depletions in MgO, CaO, total $Fe_2O_3$, and LREE. On the other hand, garnet zone of endoskarn is enriched in CaO, MnO, total $Fe_2O_3$, MgO and depleted in $K_2O$, $Na_2O$. $Al_2O_3$ seems to be determining inert component. Thus the behavior of elements indicates that the mobility of elements depends on the equilibration of hydrothermal fluid and minerals and affects on enrichments by fractionation from and depletions by partition to hydrothermal fluid, respectively. Traversing toward pelitic limestone from a central zone of exoskarn, the exoskarn also shows a zonal arrangement as follows: garnet zone, clinopyroxene zone, and decolored pelitic limestone. The arrangement of mineral assemblages in skarns of the Wondong mine is the result of an increase in CaO and $K_2O$ toward the pelitic limestone. Skarn and ore minerals were formed in the following sequence: early skarn, late skarn and magnetite, pyrite, sphalerite, galena, and molybdenite. On the basis of stabilities of mineral assemblages, physicochemical conditions of the late skarn and magnetite mineralization are estimated to be $350^{\circ}C{\leq}T{\leq}400^{\circ}C$ at 1 Kb, $-23{\leq}log\;fO_2{\leq}-18$, and $0.005{\leq}XCO_2{\leq}0.01$, while those of the early skarn to be $420^{\circ}C{\leq}T{\leq}550^{\circ}C$ at 1 Kb.

  • PDF

Studies on Geology and Mineral Resources of the Okcheon Belts -Mineralization in the Vicinity of the Muamsa Granite Stock- (옥천대(沃川帶)의 지질(地質) 및 광물자원(鑛物資源)에 관(關)한 연구(硏究) -무암사화강암(務岩寺花崗岩) 주위에서의 광화작용(鑛化作用)에 관(關)하여-)

  • Yun, Suckew;Kim, Kyu Han;Woo, Jong Sang
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.3-17
    • /
    • 1986
  • Hundred mineral deposits including W-Mo, Pb-Zn-Cu, fluorite and talc occur in the Cambre-Ordovician limestone contacting with the Cretaceous Muamsa and Wolak granitoids in the Susanri-Hwanggangri mineralized zone. In most mineral deposits characterized by metasomatic replacement, skarn and hydrothermal vein types, two distinct tendencies were found as W-Mo mineralization in or/and near granitoid batholith and ($Pb-Zn-Cu(CaF_2)$) mineralization which is gradually increased toward the batholith. W-Mo veins of extensive vein system occupy northly striking fractures whilst $Pb-Zn-Cu-CaF_2$ veins strike northeast or northwest. In this work, three representative lead-zinc-copper deposits choosing the Dangdu, Useog and Eoksu mines were dealt with in detail. Skarn ore bodies in the Dangdu mine were grouped into early diopside rich clinopyoxene-garnet, barren skarn and ore bearing late hedenbergite rich clinopyroxene-garnet skarn. Temperature and $X_{CO_2}$, obtained from hedenbergite-andradite-calcite-quartz mineral equilibria in the Dangdu ore deposits were $580{\sim}650^{\circ}C$ and 0.15~0.3, respectively. Fluid inclusien evidence in the Useog mine indicates that main stage mineralization temperature ranges from 224 to $389^{\circ}C$ with a salinity of 2~17 equivalent wt. percent NaCl. Sphalerites from the Dangdu and Useog mines have 16~17.7 mole percent in FeS which is relatively consistent to those of some other lend-zinc ore deposits in South Korea. Filling tcmjCerature of fluid inclusion frem the Eoksu mine shows deposition of ore within the temperature ranges from 237 to $347^{\circ}C$ and within the salinity ranges from 2.6 to 10.77 equivalent wt. percent NaCl.

  • PDF

A Geochemical Study of Gold Skarn Deposits at the Sangdong Mine, Korea (상동광산 금스카른광상의 지구화학적 연구)

  • Lee, Bu Kyung;John, Yong Won
    • Economic and Environmental Geology
    • /
    • v.31 no.4
    • /
    • pp.277-290
    • /
    • 1998
  • The purpose of this research is to investigate the dispersion pattern of gold during skarnization and genesis of gold mineralization in the Sangdong skarn deposits. The Sangdong scheelite orebodies are embedded in the Cambrian Pungchon Limestone and limestone interbedded in the Myobong Slate of the Cambrian age. The tungsten deposits are classified as the Hangingwall Orebody, the Main Orebody and the Footwall Orebody as their stratigraphic locations. Recently, the Sangdong granite of the Cretaceous age (85 Ma) were found by underground exploratory drillings below the orebodies. In geochemisty, the W, Mo, Bi and F concentrations in the granite are significantly higher than those in the Cretaceous granitoids in southern Korea. Highest gold contents are associated with quartz-hornblende skarn in the Main Orebody and pyroxene-hornblende skarn in the Hangingwall Orebody. Also Au contents are closely related to Bi contents. This could be inferred that Au skarns formed from solutions under reduced environment at a temperature of $270^{\circ}C$. According to the multiple regression analysis, the variation of Au contents in the Main Orebody can be explained (87.5%) by Ag, As, Bi, Sb, Pb, Cu. Judging from the mineralogical, chemical and isotope studies, the genetic model of the deposits can be suggested as follows. The primitive Sangdong magma was enriched in W, Mo, Au, Bi and volatiles (metal-carriers such as $H_2O$, $CO_2$ and F). During the upward movement of hydrothermal ore solution, the temperature was decreased, and W deposits were formed at limestone (in the Myobong Slate and Pungchon Limestone). In addition, meteoric water influx gave rise to the retrogressive alterations and maximum solubility of gold, and consequently higher grade of Au mineralization was deposited.

  • PDF

Stable Isotope and Fluid Inclusion Studies of the Manjang Copper Mine, South Korea (만장동광산(萬藏銅鑛山)에 대(對)한 유체포유물(流體包有物) 및 안정동위원소분석(安定同位元素分析) 연구(硏究))

  • Kim, Kyu Han;Shin, Jeung Sook
    • Economic and Environmental Geology
    • /
    • v.20 no.3
    • /
    • pp.169-177
    • /
    • 1987
  • The Manjang copper magnetite-fluorite orebodies are imbedded within the limestone beds of the Hwajonri Formation. The ore deposits are characterized by magnetite-fluorite bearing skarn orebody in the west orebody and copper sulfide veins of the central and main orebodies. This study includes fluid inclusion geothermometry, salinity analysis, stable isotope analysis, and application of phase rule to mineral associations in skarn ore. Ore minerals are closely associated with the skarn silicates such as garnet, wollastonite and epidote. Magnetite and fluorite are remarkable in the west orebody whereas chalcopyrite is dominate in the central and main orebodies where pyrite and pyrrhotite also appear as sulfide gangues. Homogenization temperature and salinity of fluid inclusions are measured ranging between $240^{\circ}C$ and $350^{\circ}C$, 6.3~12.9 wt. percent in quartz and $220^{\circ}C$ and $350^{\circ}C$, 8.5~9.9wt. percent in fluorite, respectively. This indicates that the filling temperature and salinity are higher in quartz than in fluorite with the tendency of both to be linearly decreased suggesting an attribution of meteoric water to the mineralization. $T-fo_2$ diagram in the Ca-Fe-Si system at 1 kb and $Xco_2$=0.02 shows that the mineral assemblages with decreasing temperature are andradite-hedenbergite-calcite, hedenbergite-andradite-quartz, magnetite-andradite-quartz, and magnetite-quartz-calcite, indicating that magnetite crystallizes mostly late skarn stage at lower temperature. According to the carbon and oxygen isotopic values of the host limestone and calcite in ores, the sourec of carbon might be mixture of host limestone and deep seated carbons. Sulfur isotope data imply that ore fluids be relatively homogeneous in sulfur isotopic composition, mainly derived from igneous source.

  • PDF

Quantitative Analysis of Skarn Ore Using 3D Images of X-ray Computed Tomography (3차원 X-ray 단층 화상을 이용한 스카른 광석의 정량분석 연구)

  • Jeong, Mi-Hee;Cho, Sang-Ho;Jeong, Soo-Bok;Kim, Young-Hun;Park, Jai-Koo;Kaneko, Katsuhiko
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.211-217
    • /
    • 2010
  • A micro-focus X-ray computed tomography (CT) was employed to determine quantitative phase analysis of skarn Zn-Pb-Cu ore by nondestructive visualization of the internal mineral distribution of a skarn ore. The micro CT images of the ore were calibrated to remove beam hardening artifacts, and compared with its scanning electron microscope (SEM) images to set the threshold of CT number range covering sulfide ore minerals. The volume ratio of sulfide and gangue minerals was calculated 20.5% and 79.5%, respectively. The quantitative 3D X-ray CT could be applied to analyse the distribution of economic minerals and their recovery.