• Title/Summary/Keyword: skarn

Search Result 109, Processing Time 0.045 seconds

Fluid Inclusion Study of the Sangdong Tungsten Skarn Deposits (상동(上東) 텅그스텐 스카른 광상(鑛床)의 유체포유물(流體包有物) 연구(硏究))

  • Moon, Kun Joo
    • Economic and Environmental Geology
    • /
    • v.18 no.3
    • /
    • pp.205-216
    • /
    • 1985
  • Fluid inclusion study reveals that the mineralogical zonal distribution of the Sangdong skarn orebody may be likely related to (homogenization) temperatures of fluids with time and spaces. Firstly limestone beds were replaced by hot boiling fluids ranging from 350 to $550^{\circ}C$ and formed the pyroxene-garnet skarn, which was replaced into the amphibole and the quartz-mica skarns by non-boiling fluids at 300 to $500^{\circ}C$, mainly penetrated the central part of the pyroxene-garnet skarn orebody. Freezing tests identify presence of $CaCl_2$ and $MaCl_2$ as brines in the fluids besides NaCl and KCL that are shown as daughter minerals and show that two or more fluids be involved in mineralization by showing a bimodal distribution of salinities. This study has contributed to find a new orebody and a granitic pluton as a source rock.

  • PDF

Preliminary Study of Oxidized Au skarn Model in the Geodo Mine Area to Mineral Exploration (광물자원탐사를 위한 거도광산지역의 산화형 스카른 금광상모델 예비연구)

  • Kim, Eui-Jun;Park, Maeng-Eon;Sung, Kyul-Youl
    • Economic and Environmental Geology
    • /
    • v.42 no.4
    • /
    • pp.289-300
    • /
    • 2009
  • The Geodo mine area, had been developed for Fe and Cu ores since 1963 and abandoned in recent decades, is located in the central part of the Taebaeksan mineralized district. This area comprises of the Jangsan, Myobong, Pungchon, Hwajeol, Dongjeom, and Dumugol Formations in ascending stratigraphic order. These Formations were intruded by the Cretaceous Eopyeong granitoids that appears to produce the Geodo skarn. Their compositions are relatively oxidized quartz monzodiorite to granodiorite (magnetite series, $Fe_2O_3/FeO=0.3{\sim}1.1$). Mineralizations related skarn deposit occur in the Myobong, Pungchon, and Hwajeol Formations. The proximal skarn is zoned from andraditic garnet ($Ad_{44-95}Gr_{1-53}$) predominant adjacent to the Eopyeong granitoids to diopsidic pyroxene ($Hd_{10-100}Di_{0-89}$) predominant away from the one. The differential proportion of garnet and pyroxene is generated by water/rock ratio and their source, such as magmatic and meteoric water. This is useful tool for assessment the overall oxidation state of the entire skarn system. Gold occurs in proximal red to brownish garnet skarn, and genetically associated with Bi- and Te-bearing minerals. Skarn deposit developed in the Geodo mine area is considered as oxidized Au skarn category, based on chemical composition of the Eopyeong granitoids, zonation of skarn, and gold occurrences. Garnet-rich skarn zone will be the main target for exploration of gold in the study area. However, it is needed to the detailed survey on vertical zonation of this area as well as lateral zonation. The result of this survey would provide an important basis for the exploration of the skarn Au deposit in the Geodo mine area.

Skarn Formation in Metamorphic Rocks of the Chungju Mine Area (충주광산 지역 계명산층의 텅스텐 스카른화작용)

  • Kim, Gun-Soo;Park, Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.28 no.3
    • /
    • pp.185-197
    • /
    • 1995
  • Tungsten skarns in the Chungju mine which consists mainly of strata-bound type iron ore deposits are found in the vicinity of the contact between the age-unknown Kyemeongsan Formation and granitic rock intrusions of Mesozoic age($134{\pm}2Ma$). Tungsten skarns were formed extensively from alumina and silica-rich schistose rocks by the introduction of calcium and iron from hydrothermal solution. The skarns comprise a metasomatic column and are subdivided into four facies; garnet facies, wollastonite facies, epidote facies and chlorite facies. The skarn process in time-evolutional trend can be divided broadly into the four facies in terms of the paragenetic sequence of calc-silicates and their chemical composition. Skarn and ore minerals were formed in the following sequence; (1) garnet facies, adjacent to biotite granite, containing mainly garnet(>Ad96) and magnetite, (2) wollastonite facies containing mainly wollastonite and garnet(Ad95~60), (3) epidote facies, containing mainly epidote(Ps35~31), quartz, andradite-grossular(Ad63~50), and scheelite, (4) chlorite facies, adjacent to and replacing schist, containing mainly chrolite, muscovite, quartz, calcite, epidote(Ps31~25), hematite and sulfides. The mineral assemblage and mineral compositions. suggest that the chemical potentials of Ca and Fe increased toward the granitic rock, and the component Al, Mg, K, and Si decreased from the host rock to granitic rock. The homogenization temperature and salinity of fluid inclusion in scheelite, quartz and epidote of epidote facies skarn is $300-400^{\circ}C$ and 3-8wt.% eqiv. NaCl, respectively. ${\delta}^{34}S$ values of pyrite and galena associated with chlorite facies skarn is $9.13{\sim}9.51%_{\circ}$ and $5.85{\sim}5.96%_{\circ}$, respectively. The temperature obtained from isotopic com· position of coexisting pyrite-galena is $283{\pm}20^{\circ}C$. Mineral assemblages and fluid inclusion data indicate that skarn formed at low $X_{CO_2}$, approximately 0.01. Temperature of the skarn mineralization are estimated to be in the range of $400^{\circ}C$ to $260^{\circ}C$ and pressure to be 0.5 kbar. The oxygen fugacity($fo_2$) of the skarn mineralization decreased with time. The early skarn facies would have formed at log $fo_2$ values of about -25 to -27, and late skarn facies would have formed at log $fo_2$ values of -28 to -30. The estimated physicochemical condition during skarn formation suggests that the principal causes of scheelite mineralization are reduction of the ore·forming fluid and a decrease in temperature.

  • PDF

Ore Geology of Skarn Ore Bodies in the Kasihan Area, East Java, Indonesia (인도네시아 까시한지역 스카른광체의 광상학적 특성)

  • Han, Jin-Kyun;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.45 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • Copper-zinc-bearing skarns of the Kasihan area developed at limestone layers in the sedimentary facies of the Late Oligocene Arjosari Formation. The skarns consist mainly of fine-grained, massive clinopyroxene-garnet, garnet, garnet-epidote, and epidote skarns. Most copper and zinc(-lead) ore mineralization occur in the clinopyroxene-garnet and garnetepidote skarn, respectively. Clinopyroxene occurs as a continuous solid solution of diopside and hedenbergite (from nearly pure diopside up to ${\approx}34$ mole percent hedenbergite), with a maximum 28.2 mole percent johannsenite component. The early and late pyroxenes of Kasihan skarns are diopsidic and salitic, respectively. They fall in the fields typical Cu- and Zn-dominated skarns, respectively. Garnet displays a relatively wide range of solid solution between grossular and andradite with up to ${\approx}2.0$ weight percent MnO. Garnet in early pyroxene-garnet skarn ranges from 49.1 to 91.5 mole percent grossular (mainly ${\geq}78$ mole % grossular). Garnets in late garnet and garnet-epidote skarns range from 2.8 to 91.4 mole percent grossular (mainly ${\geq}70$ mole % for garnet skarn). Epidote compositions indicate solid solutions of clinozoisite and pistacite varying from 65.8 to 76.2 mole percent clinozoisite. Phase equilibria indicate that skarn evolution was the result of interaction of water-rich fluids ($X_{CO_2}{\leq}0.1$) with original lithologies at ${\approx}0.5$ kb with declining temperature (early clinopyroxene-garnet and garnet skarn, ${\approx}450$ to $370^{\circ}C$; late garnet-epidote and epidote skarn, ${\approx}370$ to $300^{\circ}C$).

On the Genesis of Ulsan Iron-Tungsten Deposits (울산(蔚山) 철(鐵)·중석(重石) 광상(鑛床)의 성인(成因))

  • Park, Ki Hwa;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.13 no.2
    • /
    • pp.104-116
    • /
    • 1980
  • The Ulsan mine is one of the largest contact metasomatic magnetite and scheelite deposits in the southeastern part of Korea. Mineralization at the Ulsan mine is localized along the contact between upper Cretaceous volcanic rocks and age unknown limestone which were intruded by 58 m.y. -old biotite-horndlende granite. General zonal sequence of skarn toward crystalline limestone from limestone-volcanics contact is grandite, grandite-salite and salite zones. On the otherhand volcanics origin skarns exhibits zonal sequences toward hornfels from boundary with limestone is garnet, garnet-epidote, and epidote zone. Compositions of garnets and clinopyro xenes are determined by the X-ray diffraction and reflective indecies. Local brecciation of these early skarns were followed by formation of the later skarn as zoned patches, breccia fillings and cross-cutting veins. Paragenetic sequence of late skarn minerals which is exhibited in the zoned patches and veins is an overlapping progression with time from andradite through hedenbergite or actinolite, quartz to calcite deposition. Magnetite metallization followed early formed skarns and pyrite pyrrhoite, sphalerite, galena, tennantite, scheelite and arsenopyrite deposition were simultaneously with hedenbergite, quartz and calcite of late skarn. Filling temperatures of fluid inclusions in calcites range from $160^{\circ}$ to $280^{\circ}C$.

  • PDF

Condition of the Sangdong Tungsten Skarn Formation (상동 중석 스카른의 생성조건에 관한 연구)

  • Moon, Kun Joo
    • Economic and Environmental Geology
    • /
    • v.17 no.4
    • /
    • pp.259-272
    • /
    • 1984
  • Fluid inclusion and stable isotope studies on the Sangdong tungsten skarn have led to a conclusion that the mineralizing fluids might be derived from a magma, which was inferred within 1km below the present Sangdong ore deposit. Mineral assemblages of the skarns appear to have formed under the equilibrium conditions as the fluids flow outward from a central fluid column, in which the quatz-mica occurs dominantly. A characteristic skarn showing mineralogical zonation by repeated over-prints. The quartz-mica zone at the central part of the Sangdong skarns shows the final stage of protracted fluid evolution. Thermodynamic conclusion based on simplified chemical compositions of major components may express quantitatively the conditions of the skarn formation by using diagrams.

  • PDF

Nd-Sr Isotope and Gas Composition for the Sangdong Granites Related to the Tungsten-Molybdenum Ore Mineralization (상동 중석-몰리브덴 광상의 광화관련 상동화강암의 Nd-Sr 동위원소비 및 가스 성분)

  • Kim, Kyu Han;Shin, Yu Hee
    • Economic and Environmental Geology
    • /
    • v.28 no.2
    • /
    • pp.139-145
    • /
    • 1995
  • Tungsten skarn mineralization of the Sangdong mine is localized in the interbedded limestone layers of the Myobong Slate Formation and in the limestone of the Pungchon Limestone Formation of Cambrian age. Fluid inclusion, gas composition and Nd-Sr isotope for granites and skarns have been investigated. Gas compositions show $CO_2$ rich in the Sangdong granite and CH, rich in the Nonggeori and Eopyeong granites. The initial $^{87}Sr/^{86}Sr$ and $^{143}Nd/^{144}Nd$ ratios of the Sangdong granites have 0.714~0.716(${\varepsilon}_{Sr}$=138~162) and 0.51173~0.51178(${\varepsilon}_{Nd}$=-14.4~15.5), respectively. And their two stage model ages range from 1687 to 1764 Ma. The granite characterized by high strontium initial ratios and negative eNd value could have originated from the old continental crust source. Low homogenization temperature of the Sangdong granite having $203{\sim}296^{\circ}C$ with 1.9~9.2 NaCl equiv. wt% indicates the post-magmatic hydrothermal alteration temperature. Skarn ore fluid responsible for tungsten mineralization has been evolved from CH, rich fluid of early pyroxene garnet skarn to $CO_2$ rich later quartz-mica skarn.

  • PDF

Relation of the Skarnized Calcareous Nodules in the Hwajeol Formation and the Deep Concealed Orebody (화절층내 석회질 단괴(團塊)의 스카른화와 심부잠두(深部潛頭) 광체와의 관계)

  • Moon, Kun-Joo
    • Economic and Environmental Geology
    • /
    • v.24 no.4
    • /
    • pp.335-346
    • /
    • 1991
  • It is observed that calcareous nodules of the Hwajeol Formation are locally skarnized in the Sangdong district, in which the skarn mineralization extends 5 Km westward from the Sangdong mine area to the Hwajeolchi area. After a hidden granite beneath the Sangdong mine was discovered by exploration drillings, the exploration teams of the Sangdong mine and the Korean Mining Promotion Corporation have assumed that the skarn nodule of the Hwajeol Formation was derived from emplacement of a granite in deep place and the occurrence of hidden ore bodies below the skarn, and they have discovered high grades of tungsten orebody in the same horizon of the Sangdong ore body. Mutual genetic relatioships between epidote and garnet may be explained by following chemical reactions $Ca_2FeA_{12}$ $Si_3O_{12}(OH)+CaCO_3=Ca_3(Fe,\;Al)_2$ $SiO_{12}+1/2CO_2+1/2H^+Ca_3FeSi_3O_{12}+SiO_2+CO_2=2CaFeSi_{12}O_6+CaCO_3+1/2O_3$. It is concluded that epidote and garnet are useful as target minerals indicating a potential occurrence of deep seated hidden ore body. Since the epidote may inform the emplacement of the granite, while the garnet in the skarn nodule of the Hwajeol Formation may reflect a strong hydrothermal mineralization taking place from the depth.

  • PDF

Hidden Porphyry-Related Ore Potential of the Geumseong Mo Deposit and Its Genetic Environment (금성 몰리브데늄광상의 잠두 반암형 광체에 대한 부존가능성과 성인적 환경)

  • Choi, Seon-Gyu;Park, Jung-Woo;Seo, Ji-Eun;Kim, Chang-Seong;Shin, Jong-Ki;Kim, Nam-Hyuck;Yoo, In-Kol;Lee, Ji-Yun;Ahn, Yong-Hwan
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.1-14
    • /
    • 2007
  • The Guemseong mine is located near the southern margin of the Jurassic Jecheon granitoids collectively with the Cambro-Ordovician mixed dolostone-limestone series of the Yeongweol Group, Choseon Supergroup. Here, two spatially distinct types of skarn formation have been observed. The upper transitional skarn is the calcic Mo skarn which has the mineral assemblage of $garnet+hedenbergite+epidote{\pm}wollastonite{\pm}magnetite{\pm}hematite{\pm}amphibole{\pm}chlorite{\pm}vesuvianite$ within the calcite marble. On the other hand, the lower proximal skarn occurs as a discordant magnesian Fe skarn at the contact of Mo-bearing aplitic cupolas with unidirectional solidification texture(UST) within the dolomitic marble. The magnesian Fe skarn has the mineral assemlage $olivine+diopside+magnetite+tremolite+serpentine+talc+chlorite{\pm}phlogopite$. The formation of two different types of skarn and ore mineralization in Geumseong mine have been attributed to multistage and complex metasomatic replacements that ultimately resulted in silicate-oxide-sulfide sequence of metasomatism. An early prograde stage with anhydrous skarn minerals such as olivine, clinopyroxene and/or garnet with magnetite, formed from high temperature (about $500^{\circ}\;to\;400^{\circ}C$) at an environmental condition of low $CO_2$ fugacity ($XCO_2<0.1$) and 0.5 kbar. The later retrograde stage with hydrous silicates such as amphibole, serpentine, phlogopite, epidote and chlorite with molybdenite or hematite, termed from relatively lower temperature (about $400^{\circ}\;to\;300^{\circ}C$).