• Title/Summary/Keyword: size-fractionated phytoplankton

Search Result 16, Processing Time 0.025 seconds

Response of Size-fractionated Phytoplankton to Humic Acids in the Seawater of Yeongsan River Estuary (영산강 하구에서 부식산이 식물플랑크톤에 미치는 영향)

  • Sehee Kim;Yongsik Sin
    • Ocean and Polar Research
    • /
    • v.45 no.3
    • /
    • pp.113-123
    • /
    • 2023
  • Humic substances are refractory organic compounds that are relatively low in biological activity but known to stimulate phytoplankton growth in estuarine and marine environments. The effect of humic substances on phytoplankton growth was investigated in the seawater zone of the Yeongsan River estuary where an episodic anthropogenic freshwater is discharged, affecting its water properties directly. Water samples and data of water properties were collected at three stations (Sts. A-C) along the channel of the seawater zone in February, May, August and November, 2009. The collected water samples were incubated after humic acids (HA) were added in mesocosm experiments. Phytoplankton (chlorophyll-a) were fractionated into net- (> 20 ㎛) and nano-size (< 20 ㎛) to examine the response of phytoplankton according to size. Their response to HA treatment was assessed by repeated measures analysis of variance (RM-ANOVA). The experiments showed that phytoplankton biomass (chlorophyll-a) significantly increased after HA were added at the stations near the sea dike. Especially, nano-sized chlorophyll-a concentrations increased significantly throughout the seasons. This indicates that understanding the behavior of refractory organic matters such as humic substances is required to better manage altered estuarine ecosystems including the Yeongsan River estuary which are affected by episodic discharge of freshwater from sea dikes.

Phytoplankton Community in Adjacent Waters of Ulchin Nuclear Power Plant

  • Choi, Hyu Chang;Kang, Yeon Shik;Jeon, In Sung
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.3
    • /
    • pp.426-437
    • /
    • 2004
  • To understand the phytoplankton community in adjacent waters of Ulchin nuclear power plant (UNPP), abundance and the size fractionated $chl-\alpha$ concentrations were evaluated through seasonal interval sampling from April 2003 to February 2004. A total of 211 different phytoplankton species was observed and mean abundance of phytoplankton in each study period ranged from 244,286 to 1,221,779 cells $L^{-1}$. The contributions of microplankton $(>20\mu{m})$ to total phytoplankton abundance ranged from 42.5 to 83.6% (average 66.1%) and those of nanoplankton $(>20\mu{m})$ ranged from 16.4 to 57.5% (average 33.9%). Total chl-$\alpha$ concentrations of phytoplankton ranged from 0.52 to $2.26\mu{g}\;L^{-1}$. The contribution of chl-$\alpha$ concentrations of microplankton was higher than that of nano- and picoplankton through the study period with exception of July 2008. The results of abundances and $chl-\alpha$ concentrations suggest that microplankton has an important role in adjacent waters of UNPP. The diminution of abundances and $chl-\alpha$ concentrations of phytoplankton was observed after passage through the cooling water system, but it was gradually recovered by mixing with the ambient waters. Our results suggested that the influence of thermal discharges on phytoplankton should be restricted within narrow limits around outlet area of thermal effluents.

Dynamics of the Phytoplankton Community in the Coastal Waters of Chuksan Harbor, East Sea (동해 축산항 연안의 식물플랑크톤 군집 동태)

  • Kang, Yeon-Shik;Choi, Hyu-Chang;Lim, Joo-Hwan;Jeon, In-Seong;Seo, Ji-Ho
    • ALGAE
    • /
    • v.20 no.4
    • /
    • pp.345-352
    • /
    • 2005
  • In order to investigate the distribution of phytoplankton community in the coastal waters of the Chuksan Harbor, East Sea, the abundance and biomass of phytoplankton have been evaluated through seasonal interval sampling from April 2000 to October 2002. A total of 363 different phytoplankton species was observed and most of them were composed of diatoms. The mean abundance and chlorophyll-a concentration of phytoplankton during the study period ranged from 56 ${\times}$ $10^3$ to 720 ${\times}$ $10^3$ cells $L^{-1}$ and from 0.78 to 3.29 μg chl-a $L^{-1}$, respectively. The relative contribution of the size-fractionated phytoplankton to phytoplankton community showed difference according to seasons. The average contribution of nano-phytoplankton(<20 $\mu$m) was over 50% in the total abundance and biomass of the phytoplankton. Our results show that nano-phytoplankton play an important role in the southern coastal waters of the East Sea. And the environmental factors such as suspended substances, phosphates and silicates were positively correlated with the abundances and biomass of phytoplankton.

Temporal and Spatial Variations of Size-structured Phytoplankton in the Asan Bay (아산만 식물플랑크톤 크기구조의 시.공간적 변동)

  • Hyun Bong-Kil;Sin Yong-Sik;Park Chul;Yang Sung-Ryull;Lee Young-Joon
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.1 s.61
    • /
    • pp.7-18
    • /
    • 2006
  • Samples were collected from five stations monthly from October 2003 to September 2004 to investigate seasonal variation of size structure of phytoplankton and relationship between size-fractionated phytoplankton and environmental factors in the Asan Bay. The contribution of large cells (microphytoplankton, $>20\;{\mu}m$) to total concentrations of chlorophyll $\alpha$ was higher than small cells (nanophytoplankton, $3\sim20\;{\mu}m$; picophytoplankton, $<3\;{\mu}m$) during the sampling period. Especially, large cells contributed 80% to the total chlorophyll a from February, 2004 to April 2004 when chlorophyll $\alpha$ concentrations were high. The size structure of phytoplankton shifted from micro-size class to nano-size class and picophytoplankton rapidly increased when phytoplankton biomass decreased in May 2004. Microphytoplankton exhibited a high biomass in the upper region during winter-spring season whereas nano- and picophytoplankton showed two peaks in the middle-lower regions (Station 3,5) during spring and summer. Microphytoplankton are most likely controlled by water temperature and nutrient supply during the cold season whereas nano- and picophytoplankton may be affected by stratification, light exposure during the warm season.

Characteristics and Variation of Size-fractionated Zooplankton Biomass in the Northern East China Sea (동중국해 북부해역의 동물플랑크톤 크기그룹별 생체량의 분포 특성 및 변화)

  • Choi, Keun-Hyung;Lee, Chang-Rae;Kang, Hyung-Ku;Kang, Kyeong-A
    • Ocean and Polar Research
    • /
    • v.33 no.2
    • /
    • pp.135-147
    • /
    • 2011
  • Zooplankton is an important constituent in assessing ecosystem responses to global warming. The northern East China Sea is an important ecosystem for carbon cycling with a net sink of carbon dioxide. Despite their importance as a major component in carbon cycling, relatively little is known about zooplankton biomass structure and its regulating factors in the northern East China Sea. This study examined zooplankton biomass distribution pattern in the region from multiple cruises encompassing various seasons between 2004 and 2009. Results showed that zooplankton biomass exhibits less cross-shelf gradient in general with declining biomass to the eastern shelf towards the Tsushima Current Water. Size-fractionated biomass showed that the 1.0~2.0 mm size group, mostly copepods, dominated zooplankton biomass, comprising 38 to 48% of total biomass. Smaller zooplankton (0.2~1.0 mm) biomass, consisting mainly of Paracalanus spp, a particle eating herbivorous copepod, was positively related to chlorophyll-a concentration, but no relationship was established for larger zooplankton (1.0~5.0 mm). Spatially-averaged mean total zooplankton biomass was also highly related to chlorophyll-a concentration. These result suggest that the long-term trend of zooplankton biomass increase in this region is partly accounted for by the increases of phytoplankton biomass and productivity underway in the region. However, the underlying mechanisms of how sea surface warming in the study area leads to increased phytoplankton biomass and productivity remains unclear.

Spatial distribution of phytoplankton in Gamak Bay in spring, with emphasis on small phytoplankton

  • Yeongji Oh;Yoonja Kang
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.374-386
    • /
    • 2022
  • Phytoplankton communities, with emphasis on picoplankton and nanoplankton, were investigated in Gamak Bay, South Korea, where freshwater input and coastal water intrusion shape ecosystem functions. Shellfish farms and fish farms are located in the inner bay and outer bay, respectively, and tides translocate uneaten food and urine production from aquaculture farms toward the inner bay. Water masses were distinctly different based on a significantly different density between the surface and bottom layer and among three water masses, including the inner bay, outer bay, and Yeosu Harbor. Phytoplankton communities were quantified using flow cytometry and size-fractionated chlorophyll-a (chl-a) was measured. Salinity was a principal variable separating phytoplankton communities between the surface and bottom layer, whereas Si(OH)4 controlled the communities in the inner bay, and NH4+ and PO43- governed the outer bay communities. While phycocyanin-containing (PC) cyanobacteria dominated in the outer bay, phycoerythrin-containing (PE) cyanobacteria dominance occurred with cryptophyte dominance, indicating that nutrients affected the distribution of pico- and nanoplankton and that cryptophytes potentially relied on a mixotrophic mode by feeding on PE cyanobacteria. Interestingly, picoeukaryotes and eukaryotes larger than 10 ㎛ were mostly responsible for the ecological niche in the western region of the bay. Given that chl-a levels have historically declined, our study highlights the potential importance of increased small phytoplankton in Gamak Bay. Particularly, we urge an examination of the ecological role of small phytoplankton in the food supply of cultivated marine organisms.

Ecological studies on Togyo Reservoir in Chulwon, Korea. V. Seasonal Changes of Size-Fractionated Standing Crops and Chlorophyll a of Phytoplankton in Kyungan Stream of Paldang River-Reservoir Systems and Togyo Reservoir, Korea (철원북방 DMZ내의 중영양호 토교저수지의 생태학적 연구 V. 경안천(팔당호)과 토교저수지에서 식물플랑크톤의 크기별 현존량과 Chlorophyll $\alpha$의 계절 변동)

  • Han, Myung-Soo;Lee, Hu-Rang;Hong, Sung-Su;Kim, Young-Ok;Lee, Kyung;Choi, Yong-Keel;Kim, Sewha;Yoo, Kwang-Il
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.1
    • /
    • pp.91-99
    • /
    • 2002
  • With physico-chemical environmental factors such as temperature, DO, pH, conductivity and nutrients, size fractionated of phytoplankton standing crops and chlorophyll a concentrations $(>8\mu{m},\;3-8\mu{m},\;<3\mu{m})$ and their relationships were investigated at each station of Kyungan Stream and Togyo Reservoir from April to November in 1997. The two sampling sites showed different nutrient status: Kyungan Stream was eutrophic, while Togyo Reservoir was mesotrophic. Large sizes of phytoplankton and chl. a were higher in Kyungan Stream, opposite to those of Togyo Reservoir; Standing crops of phytoplankton $(>8\mu{m)$ and chl. a $(3-8\mu{m)}$ were high in Kyung-an Stream, while phytoplankton $(3-8\mu{m)}$and chi. a $(<3\mu{m)$ were abundant in Togyo Reservoir. These results imply that phytoplankton community in the highly eutrophicated water mainly comprised the large filamentous and/or colonial algae, such as Microcystis spp. and Aphanizomenon flos-aquae, which easily enriched by nutrients loading.

Seasonal variation of physico-chemical factors and size-fractionated phytoplankton biomass at Ulsan seaport of East Sea in Korea (동해 울산항에서 이화학적 환경요인 및 크기그룹별 식물플랑크톤 생체량의 계절적 변동)

  • Kwon, Oh Youn;Kang, Jung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.6008-6014
    • /
    • 2013
  • This study aimed to understand seasonal variation of physico-chemical factors and biomass of size-fractionated phytoplankton at Ulsan seaport during the period from February 2007 to November 2009. Water temperature, salinity, dissolved oxygen (DO), pH, chemical oxygen demand (COD) and total suspended solid (TSS) varied in the range of 8.94-$24.26^{\circ}C$, 25.06-34.54 psu, 4.30-10.73 mg/L, 7.97-8.53, 0.66-40.70 mg/L and 57.4-103.3 mg/L, respectively. These factors showed no clear spatial variation unlike spatial pattern of inorganic nutrients and total chlorophyll-a (chl-a) concentration as biomass. Concentration of phosphate, nitrate and silicate ranged from 0.01 to 3.03 ${\mu}M$, 0.05 to 21.62 ${\mu}M$, and 0.01 to 27.82 ${\mu}M$, respectively, with 2 times higher concentration at inner stations than that at outer stations during the study period. Within the range of total chl-a concentration (0.36-7.11 ${\mu}gL^{-1}$), higher concentration (avg. 1.88 ${\mu}gL^{-1}$) of total chl-a were observed at inner stations compared to that (avg. 0.90 ${\mu}gL^{-1}$) at outer stations. Micro-sized phytoplankton dominated total biomass of phytoplankton in spring (34.0-81.2%), summer (35.1-65.6%) and winter (3.9-62.0%). Nano- and pico-sized phytoplankton contributed 58.2-74.5% and 22.4-38.2% to total biomass of phytoplankton in autumn, respectively. However, contribution in biomass of size-fractionated phytoplankton to total phytoplankton biomass showed no clear difference between inner and outer stations. Consequently, these results indicated that spatio-temporal distribution of phytoplankton biomass at Ulsan seaport was dominated by micro-phytoplankton (avg. 52.3%) during the study period except autumn, which was closely dependent on the concentration of inorganic nutrients (p<0.05).

Seasonal Variation of Phytoplankton Community Structure in NortheasternCoastal Waters off the Korean Peninsula

  • Kang, Yeon-Shik;Choi, Hyu-Chang;Noh, Jae-Hoon;Choi, Joong-Ki;Jeon, In-Seong
    • ALGAE
    • /
    • v.21 no.1
    • /
    • pp.83-90
    • /
    • 2006
  • Phytoplankton community in the coastal waters off the northeastern Korean Peninsula were characterized from May 2002 to August 2003. Taxonomic composition, abundance and biomass were determined at two water depths at 10 sample sites. A total of 153 phytoplankton species including 121 diatoms, 28 dinoflagellates, 7 green algae and 7 other species were identified. The mean abundance of phytoplankton varied from 15 to 430 cells mL–1 in the surface layer and from 11 to 545 cells mL–1 in the bottom layer, respectively. Phytoplankton was more abundant in coastal stations relative to those in more open ocean. The most dominant species were marine diatoms such as Thalassionema nitzschioides, Licmorphora abbreviata, Chaetoceros affinis and Chaetoceros socialis. In addition, a few limnotic diatoms including Fragilaria capucina v. rumpens, the green alga Scenedesmus dimorphus, some marine dinoflagellates and Cryptomonas sp. appeared as dominant species. Mean concentration of total chlorophyll-a varied from 0.22 to 7.87 μg chl-a L–1 and from 0.45 to 6.79 μg chl-a L–1 in the surface and bottom layers, respectively. The contribution of phytoplankton each size-fractionated varied highly with season. The contribution of microphytoplankton to total biomass of phytoplankton in the surface and bottom layer was high in February and August 2003, and that of nano-phytoplankton was high in May 2002 in both surface and bottom layers.