• Title/Summary/Keyword: size of eutectic Si

Search Result 61, Processing Time 0.021 seconds

The Effect of Electromagnetic Vibration on Eutectic Si Size in Hypoeutectic Al-Si alloys (아공정 Al-Si합금에 있어서 공정 Si크기에 미치는 전자기진동의 영향)

  • Choi, Jung-Pyung;Yoon, Eui-Pak;Nam, Tae-Woon
    • Journal of Korea Foundry Society
    • /
    • v.24 no.2
    • /
    • pp.79-84
    • /
    • 2004
  • In this study, the electromagnetic vibration is adopted for modifying eutectic Si phase and reducing its size. The higher the current density and frequency of electromagnetic vibration(EMV), the finer the size of eutectic Si phase. The tensile strength and elongation of EMVed alloy were highly improved. Measured twin probability of EMVed alloy at a frequency of 1000 Hz was approximately six times as high as that of the normal alloy. The mechanism for the increase in twin density due to EMV during solidification could be supposed from the fact that the preferential growth along <112> in silicon was suppressed by preventing Si atom from attaching to the growing interface of Si phase and by changing the solid/liquid interfacial energy of silicon. According to the result of UTS test, because of modification of eutectic Si, UTS and elongation are highly increased.

Microstructure and Tensile Properties in Low Pressure Cast Al-Si Alloy through Cooling Rate Control

  • Suh, Jun-Young;Park, Sung Jin;Lee, Hee-Kwon;Chang, Si Young
    • Korean Journal of Materials Research
    • /
    • v.30 no.2
    • /
    • pp.51-56
    • /
    • 2020
  • In this study, three kinds of metal chills such as SS400, AC4CH and brass, with different thicknesses of 40 ~ 80 mm, were applied for low pressure casting of Al-Si alloy to control cooling rate. The microstructural characteristics with increasing cooling rate were represented using factors including D1, D2, size of primary α phases and shape factor and size of eutectic Si. The tensile properties were investigated and additionally analyzed based on the microstructural characteristics. As the cooling rate increased, D1, D2, and sizes of primary α phases and eutectic Si apparently decreased and the shape factor of eutectic Si increased to over 0.8. The ultimate tensile strength (UTS) and yield strength (YS) increased with decreasing D1, D2, and size of primary α phases, while elongation increased with decreasing size of eutectic Si and concurrently increasing shape factor of eutectic Si. This indicated that the primary α phases and eutectic Si in Al-Si alloy were refined with increasing cooling rate, resulting in improvement of UTS and YS without sacrificing elongation. After the tensile test, preferential deformation of primary α phases was observed in the Al-Si alloy produced at higher cooling rates of more than 0.1 K/s.

Molecular Dynamics Simulation of Nano-Deformation Behavior of the Grain-Size Controlled Rheology Material (분자동력학을 이용한 결정립 제어 레오로지 소재의 나노 변형거동 전산모사)

  • Kim J. W.;Youn S. W.;Kang C. G.
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.319-326
    • /
    • 2005
  • In this study, the nano-deformation behavior of semi-solid Al-Si alloy was investigated using a molecular dynamics simulation as a part of the research on the surface crack behavior in thixoformed automobile parts. The microstructure of the grain-size controlled Al-Si alloy consists of primary and eutectic regions. In eutectic regions the crack initiation begins with initial fracture of the eutectic silicon particles and inside other intermetallic phases. Nano-deformation characteristics in the eutectic and primary phase of the grain-size controlled Al-Si alloy were investigated through the molecular dynamics simulation. The primary phase was assumed to be single crystal aluminum. It was shown that the vacancy occurred at the zone where silicon molecules were.

Effect of Ti and Sr on the Microstructure of Al-Si-Mg Casting Alloy (Al-Si-Mg계 주조합금의 미세조직에 미치는 Ti 및 Sr첨가 영향)

  • Jeong, Jae-Yeong;Kim, Gyeong-Hyeon;Kim, Chang-Ju
    • 한국기계연구소 소보
    • /
    • s.20
    • /
    • pp.71-78
    • /
    • 1990
  • This investigation was undertaken to establish the technologies of grain refinement and modification, and to characterize material properties, essential for high quality aluminum alloy castings. Grain refinement seldom changed DAS and eutectic Si size, but largely decrease grain size. The variations of grain size induced by grain refinement had a great influence on the elongation without changes in the tensile strength or yield strength. The optimum Ti level lies between 0.1% and 0.16% to achieve the best possible mechanical properties. DAS and grain size were little affected, but eutectic Si size was greatly refined by modification. The variation of eutectic Si size had a great effect on the elongation, impact value, fracture toughness and fatigue crack propagation rate without changes in the tensile strength or yield strength. The Sr content of 0.015% is optimum to modification.

  • PDF

The Effect of the cooling Rate on Fracture Toughness and Fatigue Crack Properties of Al-Si-Mg(A356) Alloy Castings (Al-Si-Mg(A356) 주조합금의 파괴인성 및 피로균열전파에 미치는 응고속도의 영향)

  • Kim, Chang-Joo;Kim, Chung-Keun
    • Journal of Korea Foundry Society
    • /
    • v.11 no.1
    • /
    • pp.63-70
    • /
    • 1991
  • Aluminium alloy castings, which can be not only manufactured in larger geometrically complex shapes, but also show good mechanical properties in addition to light weight, have kept their potential use as structures in the field of automotives, industrial machines and aircrafts. The variations of eutectic Si size a great effect on the elongation, impact value, fracture toughness and fatigue crack propagation rate without changes in the tensile strength or yield strength. The cooling curves with the solidification rate between $1.4^{\circ}C\;/min$ and $19.1^{\circ}C\;/min$ were obtained. With the increase of solidification rate, DAS, eutectic Si size and grain size were all decreased, which enhanced the mechanical properties. The tensile strength and yield strength were the most greatly influenced by DAS, and the elongation and impact value by eutectic Si size.

  • PDF

A Study on the Nano-Deformation Characteristics of Grain-Size Controlled Rheology Material Surfaces for Surface Crack Prediction (표면크랙 예측을 위한 결정립 제어 레오로지 소재 표면의 나노 변형특성에 관한 연구)

  • 윤성원;김현일;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.355-358
    • /
    • 2004
  • In this study, the deformation characteristics of grain-size controlled rheology materials surfaces were investigated as a part of the research on the surface crack prediction in semi-solid formed automobile components. The microstructure of rheology Al-Si alloys consists of primary and eutectic regions. In eutectic regions the crack initiation begins with initial fracture of the eutectic silicon particles and inside other intermetallic phases. Nano-deformation characteristics in the eutectic and primary region of semi-solid aluminum alloys (356 alloy and 319 alloy) were investigated through the nanoindentation/scratch experiments and the AFM observation.

  • PDF

The Effect of Casting Condition and Heat Treatment on the Mechanical Properties of AC4C Alloy Castings (AC4C 합금의 기계적 성질에 미치는 주조조건과 열처리의 영향에 관한 연구)

  • Kang, Hyo-Gyoung;Cheon, Byung-Wook;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.13 no.5
    • /
    • pp.450-461
    • /
    • 1993
  • AC4C alloy casts in the metallic mold, zircon sand mold, silica sand mold and shell mold with the pouring temperatures of 680, 710 and $740^{\circ}C$ have been investigated. The tensile strength, elongation and hardness of AC4C alloy castings have been influenced by the kind of molds used. The mechanical properties in zircon sand mold castings were greater than those in other sand mold castings, but were inferior to the properties in metallic mold castings. Eutectic Si particle size and DAS were increased in the order of metallic mold, ziron sand mold, silica sand mold and shell mold. Also, they were increased with the increase of pouring temperatures. DAS, eutectic Si particle size and grain size decreased with the increase of mechanical properties as the cooling rate increased. The eutectic Si particle size and DAS of AC4C alloy castings after T6 treatment were decreased in as-cast. The variation of eutectic Si particle size has been effected on the tensile strength, elongation and fractured surface.

  • PDF

Mechanical Properties of Hyper-Eutectic Aluminum Alloys for Automobile Parts (자동차 부품용 과공정 알루미늄 합금의 기계적 특성)

  • Bae, Chul-Hong;Kim, Jong-Myung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.120-126
    • /
    • 2010
  • It was known that the excellent wear resistance of hyper eutectic aluminum alloy is based on the primary Si particles which are distributed in the base metal. When the primary Si volume fraction increases, the smaller size have excellent wear resistance characteristics. However, this trend always does not match. There is no investigation result based on the materials and methods for real using parts. In this study, using the automotive parts manufacturer currently in use hyper eutectic Al alloy tensile test specimen type sample was fabricated by 350Ton high pressure die-casting machine. Then, fluidity, tensile, impact and wear resistance properties were evaluated. If the casting quality, primary Si size, fraction and distribution are similar, mechanical properties and wear resistance are equivalent.

A study on the fluidity of graphite dispersed Al-Si alloy (흑연(黑鉛)을 분산(分散)시킨 Al-Si 합금(合金)의 유동성(流動性)에 관(關)한 연구(硏究))

  • Kwon, Hyuk-Moo;Shin, Se-Kyoon;Chang, Choong-Kun;Choi, Seung-Pyung
    • Journal of Korea Foundry Society
    • /
    • v.7 no.1
    • /
    • pp.38-44
    • /
    • 1987
  • The spiral fluidity of graphite-dispersed Al-Si alloys has been investigated as a function of contents of Si and graphite, and of particle size of graphite. The dispersion of uncoated graphite is carred out by the vortex process of preheat-treated graphite into molten metal. The fluidity of hyper-eutectic Al-Si alloys is observed to the better than that of hypo-eutectic ones. In the case of graphite-dispersed Al-Si alloys they fluidity increases in hypo-eutectic alloys and decreases in hyper-eutectic ones in comparison with that of the corresponding undispersed alloys. Fluidity decreases with an increase of amount of dispersed graphite particles and inversely proportional to the total surface area of graphite particles.

  • PDF

Refinement of Microstructures for Aluminum Piston through Ultrasonic Melt Treatment (초음파 용탕처리를 이용한 알루미늄 피스톤의 조직 미세화)

  • Lee, Sang-Hwa;Jung, Jae-Gil;Lee, Jung-Moo;Cho, Young-Hee;Yoon, Woon-Ha;Ahn, Yong-Sik;Yun, Dong-Chun;Lee, Jeong-Keun;Ryu, Kwan-Ho
    • Journal of Korea Foundry Society
    • /
    • v.36 no.2
    • /
    • pp.53-59
    • /
    • 2016
  • The effects of ultrasonic melt treatment on the microstructures of aluminum piston were examined at five observation parts having different cooling rates. The microstructure of aluminum piston consisted of primary Si, eutectic Si, and various types of intermetallic compounds. Regardless of cooling rate, the ultrasonic melt treatment transformed dendritic eutectic cells to equiaxed eutectic cells and it decreased the sizes of eutectic Si and intermetallic compounds that exist at eutectic cell boundaries. In the absence of ultrasonic treatment, coarse primary Si particles were severely segregated and its size was increased with decreasing the cooling rate. The ultrasonic treatment decreased the size of primary Si particles from $25.5{\sim}31.0{\mu}m$ to $17.6{\sim}23.1{\mu}m$, depending on the cooling rate. In the presence of ultrasonic treatment, relatively fine primary Si particles were homogeneously distributed throughout the piston. In addition, the ultrasonic treatment increased the population density and area fraction of fine primary Si particles.