• Title/Summary/Keyword: site-specific earthquake

Search Result 76, Processing Time 0.02 seconds

Assessment of Surface Topographic Effect in Earthquake Ground Motion on the Upper Slope via Two-Dimensional Geotechnical Finite Element Modeling (이차원 지반 유한요소 모델링을 통한 사면상부 지진지반운동의 지표면 지형효과 분석)

  • Sun, Chang-Guk;Bang, Kiho;Cho, Wanjei
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.201-213
    • /
    • 2015
  • Site effects resulting in the amplification of earthquake ground motion are strongly influenced not only by the subsurface soil conditions and structure, but also by the surface topography. Yet, over the last several decades, most studies of site-specific seismic responses in Korea have focused primarily on the seismic amplification associated with geologic and soil conditions. For example, the effects of local geology are now well established and have been incorporated into current Korean seismic design codes, whereas topographic effects have not been considered. To help address this shortcoming, two-dimensional (2D) seismic site response analyses, using finite element (FE) ground modeling with three different slope angles, were performed in order to assess the site effects of surface topography. We then compared our results, specifically peak ground acceleration (PGA) and acceleration response spectrum, to those of one-dimensional (1D) FE model analyses conducted alongside our study. Throughout much of the upper slope region, PGAs and spectral accelerations are larger in the 2D analyses than in the 1D analyses as a result of the topographic effect.

Determination of Site Classification Method in the Korean Peninsula Based On NYCDOT2008(2008 New York City DOT Seismic Design Guidelines) (NYCDOT2008 기준을 이용한 국내 지반의 지반분류방법 결정)

  • Kang, Ho-Deok;Kim, Ki-Sang;Sun, Chang-Kuk;Kim, Myung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.777-784
    • /
    • 2010
  • In the current Korean seismic design guide, the site classification and the corresponding site coefficients were determined based on the UBC-1997 (Uniform Building Code). In order to develop the current site classification system, it is important to compare the local site conditions in Korea to other countries which have similar seismic design guides. In the eastern United States, New York City(40degrees 45minutes north latitude, 73degrees 59minutes west longitude) suggested that current design guidelines are unsuitable to shallow bedrock depth sites. So the 3-parameter methods are performed for new criteria in New York City. In this study, site response analyses were performed at 181 study sites using one-dimensional equivalent linear to evaluate the site-specific earthquake ground motions at inland areas in the Korean peninsula and reclassify the results according to similar ground motions using the 3-parameter methods. It is effective that multi-parameter methods for Korean site characteristics in comparison with single parameter method.

  • PDF

Evaluation of Site-Specific Seismic Amplification Characteristics in Plains of Seoul Metropolitan Area (서울 평야 지역에 대한 부지 고유의 지진 증폭 특성 평가)

  • Sun, Chang-Guk;Yang, Dae-Sung;Chung, Choong-Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.4 s.44
    • /
    • pp.29-42
    • /
    • 2005
  • Total 350 borehole profiles were selected from the database of borehole logs in Seoul, for the site-specific seismic evaluation at two 4km${\times}$4km plain areas. Equivalent-linear site response analyses for the selected 350 sites were conducted based on shear wave velocity (Vs) Profiles, which were determined from the N-Vs correlation established using borehole seismic testing results in the inland areas of Korea. Most sites were categorized as site classes C and D based on the mean Vs to 30 m in depth (Vs30) ranging from 250 to 550 m/s. The she periods of the plains in Seoul ranging between 0.1 and 0.4 sec were significantly lower than those of the western US, from which the site coefficients in Korea were derived. For plains in Seoul, the site coefficients, Fa's and Fv's specified in the Korean seismic design guide, underestimate the ground motion in short-period (0.1-0.5 sec) band and overestimate the ground motion in mid-period (0.4-2.0 sec) band, respectively, because ol the differences in the geotechnical conditions between Seoul and the western US, although the Fa's in several sites overestimate the motion due to the base Isolation effect resulted from the soft layer in soil deposit.

Performance Based Seismic Design State of Practice, 2012 Manila, Philippines

  • Sy, Jose A.;Anwar, Naveed;HtutAung, Thaung;Rayamajhi, Deepak
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.3
    • /
    • pp.203-209
    • /
    • 2012
  • The purpose of this paper is to present the state of practice being used in the Philippines for the performance-based seismic design of reinforced concrete tall buildings. Initially, the overall methodology follows "An Alternative Procedure for Seismic Analysis and Design of Tall Buildings Located in the Los Angeles Region, 2008", which was developed by Los Angeles Tall Buildings Structural Design Council. After 2010, the design procedure follows "Tall Buildings Initiative, Guidelines for Performance-Based Seismic Design of Tall Buildings, 2010" developed by Pacific Earthquake Engineering Research Center (PEER). After the completion of preliminary design in accordance with code-based design procedures, the performance of the building is checked for serviceable behaviour for frequent earthquakes (50% probability of exceedance in 30 years, i.e,, with 43-year return period) and very low probability of collapse under extremely rare earthquakes (2% of probability of exceedance in 50 years, i.e., 2475-year return period). In the analysis, finite element models with various complexity and refinements are used in different types of analyses using, linear-static, multi-mode pushover, and nonlinear-dynamic analyses, as appropriate. Site-specific seismic input ground motions are used to check the level of performance under the potential hazard, which is likely to be experienced. Sample project conducted using performance-based seismic design procedures is also briefly presented.

Conversion of Recorded Ground Motion to Virtual Ground Motion Compatible to Design Response Spectra (계측 기록의 설계스펙트럼 부합 가상 지진 변환 방법)

  • Ji, Hae Yeon;Choi, Da Seul;Kim, Jung Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.33-42
    • /
    • 2021
  • The design response spectrum presented in the seismic design standard reflects the characteristics of the tectonic environment at a site. However, since the design response spectrum does not represent the ground motion with a specific earthquake magnitude or distance, input ground motions for response history analysis need to be selected reasonably. It is appropriate to use observed ground motions recorded in Korea for the seismic design. However, recently recorded ground motions in the Gyeongju (2016) or Pohang (2017) earthquakes are not compatible with the design response spectrum. Therefore, it is necessary to convert the recorded ground motion in Korea to a model similar to the design response spectrum. In this study, several approaches to adjust the spectral acceleration level at each period range were tested. These are the intrinsic and scattering attenuation considering the earthquake environment, magnitude, distance change by the green function method, and a rupture propagation direction's directivity effect. Using these variables, the amplification ratio for the representative natural period was regressed. Finally, the optimum condition compatible with the design response spectrum was suggested, and the validation was performed by converting the recorded ground motion.

Regional Estimation of Site-specific Seismic Responses at Gyeongju by Building GIS-based Geotechnical Information System (GIS 기반의 지반 정보 시스템 구축을 통한 경주 지역 부지고유 지진 응답의 지역적 평가)

  • Sun, Chang-Guk;Chung, Choon-Ki
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.2
    • /
    • pp.38-50
    • /
    • 2008
  • The site-specific seismic responses and corresponding seismic hazards are influenced mainly by the subsurface geologic and geotechnical dynamic characteristics. To estimate reliably the seismic responses in this study, a geotechnical information system (GTIS) within GIS framework was developed by introducing new concepts, which consist of the extended area containing the study area and the additional site visit for acquiring surface geo-knowledge data. The GIS-based GTIS was built for Gyeongju area, which has records of abundant historical seismic hazards reflecting the high potential of future earthquakes. At the study area, Gyeongju, intensive site investigations and pre-existing geotechnical data collections were performed and the site visits were additionally carried out for assessing geotechnical characteristics and shear wave velocity ($V_S$) representing dynamic property. Within the GTIS for Gyeongju area, the spatially distributed geotechnical layers and $V_S$ in the entire study area were reliably predicted from the site investigation data using the geostatistical kriging method. Based on the spatial geotechnical layers and $V_S$ predicted within the GTIS, a seismic zoning map on site period ($T_G$) from which the site-specific seismic responses according to the site effects can be estimated was created across the study area of Gyeongju. The spatial $T_G$ map at Gyeongju indicated seismic vulnerability of two- to five-storied buildings. In this study, the seismic zonation based on $T_G$ within the GIS-based GTIS was presented as regional efficient strategy for seismic hazard prediction and mitigation.

  • PDF

Cost Effectiveness Evaluation of Seismic Isolated Bridges in Low and Moderate Seismic Region (중약진 지역에서의 지진격리교량의 비용효율성 평가)

  • 고현무
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.440-447
    • /
    • 2000
  • In order to evaluate the cost effectiveness of seismic isolation for bridges in low and moderate seismic region, a method of calculation minimum life-cycle cost of seismic-isolated bridges under specific acceleration level and soil condition is developed. Input ground motion is modeled as spectral density function compatible with response spectrum for combination of acceleration coefficient and site coefficient. Failure probability is calculated by spectrum analysis based on random vibration theories to simplify repetitive calculations in the minimization procedure. Ductility of piers and its effects on cost effectiveness are considered by stochastic linearization method. Cost function and cost effectiveness index are defined by taking into consideration the characteristics of seismic isolated bridges. Limit states for calculation of failure probability are defined on superstructure, isolator and pier, respectively. The results of example design and analysis show that seismic isolation is more cost-effective in low and moderate seismic region than in high seismic region.

  • PDF

Characteristics of Spectrum using Observed Ground Motion from the Yongwol and the Kyoungju Earthquakes(II) (영월 및 경주지진 파형의 주파수 분석(II))

  • 김준경
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.57-60
    • /
    • 1999
  • Amplification factor spectrum using the observed strong ground motions database in the Korean Peninsula has been obtained and compared with Standard Rpectrum which wa suggested by United States Nuclear Regulatory Committee. The observed ground motions from the Yongwol and the Kyoungju Earthquakes respectively which are supposed to represent domestic seismotectonic characteristics such as seismic source attenuation of the propagation meium and site specific effect are used for the analysis of amplification factor spectrum,. The database are slightly different from the those of the second study. Amplification factors have been calculated by comparing the observed peak ground motions with results from responses to the observed horizontal na vertical ground motions. The comparison have shown that the amplification factors resultant from this study exceeds those of Standard Response Spectrum The results suggest that the characteristics of seismic strong ground motion which are supposed to represent the domestic seismotectonic characteristics differs from those of Standard Response Spectrum especially at higher frequencies. The results from the 2nd study are similar to those of 1st analysis.

  • PDF

Spatially variable effects on seismic response of the cable-stayed bridges considering local soil site conditions

  • Tonyali, Zeliha;Ates, Sevket;Adanur, Suleyman
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.143-152
    • /
    • 2019
  • In this study, stochastic responses of a cable-stayed bridge subjected to the spatially varying earthquake ground motion are investigated for variable local soil cases and wave velocities. Quincy Bay-view cable-stayed bridge built on the Mississippi River in Illinois, USA selected as a numerical example. The bridge is composed of two H-shaped concrete towers, double plane fan type cables and a composite concrete-steel girder deck. The spatial variability of the ground motion is considered with the coherency function, which is represented by the components of incoherence, wave-passage and site-response effects. The incoherence effect is investigated by considering Harichandran and Vanmarcke model, the site-response effect is outlined by using hard, medium and soft soil types, and the wave-passage effect is taken into account by using 1000, 600 and 200 m/s wave velocities for the hard, medium and soft soils, respectively. Mean of maximum response values obtained from the analyses are compared with those of the specific cases of the ground motion model. It is concluded that the obtained results from the bridge model increase as the differences between local soil conditions cases of the bridge supports change from firm to soft. Moreover, the variation of the wave velocity has important effects on the responses of the deck and towers as compared with those of the travelling constant wave velocity case. In addition, the variability of the ground motions should be considered in the analysis of long span cable-stayed bridges to obtain more accurate results in calculating the bridge responses.

Analysis of Tsunami Resonance and Impact in Coastal Waters

  • Lee, Joong-Woo;Kim, Kyu-Kwang;Yamazaki, Yoshiki;Cheung, Kwok Fai;Yamanaka, Ryoichi
    • Journal of Navigation and Port Research
    • /
    • v.35 no.9
    • /
    • pp.755-763
    • /
    • 2011
  • Recently, extreme tsunami waves generated by submarine earthquake have caused tremendous damages to the coastal cities and ports. Strong seiche oscillations and runups are observed in specific sea areas around the world. Although no frequent impacts to the coast of Korean peninsula, there exist some important events in the east of Korea in the past. This study focuses on two historical events and recalculate with different fault and rupture mechanism for prediction considering the recent trend of submarine earthquake. The present study of the 1983 Akita tsunamis demonstrates the multi-scale resonance along continental coasts. Together with the Nankai tsunami for inland sea, we have confirmed the inland sea resonance surrounded by islands in defining the impact along the coast. Coherence and wavelet analyses for deducing a predominant period and time frequency are useful in reasoning the inundation. The resonance modes, which are largely independent of the tsunami source, allow identification of at-risk communities and infrastructure for mitigation of tsunami hazards. Furthermore, understanding of the resonance and the predicted runups for the site of power plant and industrial complex in the east coast of Korea would allow better preparation for the future disasters.