• Title/Summary/Keyword: site transfer function

Search Result 73, Processing Time 0.022 seconds

Numerical and random simulation procedure for preliminary local site characterization and site factor assessing

  • Beneldjouzi, Mohamed;Laouami, Nasser;Slimani, Abdennasser
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.79-87
    • /
    • 2017
  • Seismic analysis of local site conditions is fundamental for a reliable site seismic hazard assessment. It plays a major role in mitigation of seismic damage potential through the prediction of surface ground motion in terms of amplitude, frequency content and duration. Such analysis requires the determination of the transfer function, which is a simple tool for characterizing a soil profile by estimating its vibration frequencies and its amplification potential. In this study, numerical simulations are carried out and are then combined with a statistical study to allow the characterization of design sites classified by the Algerian Building Seismic Code (RPA99, ver 2003), by average transfer functions. The mean transfer functions are thereafter used to compute RPA99 average site factors. In this regard, coming up seismic fields are simulated based on Power Spectral Density Functions (PSDF) defined at the rock basement. Results are also used to compute average site factor where, actual and synthetic time histories are introduced. In absence of measurement data, it is found that the proposed approach can be used for a better soil characterization.

Estimation of Ground Response Characteristics by Microtremor (미세진동 측정을 통한 지반응답특성 평가)

  • Joh sung-ho;Lee il-wha;Ko hak-song
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.718-721
    • /
    • 2005
  • The purpose of the study is to evaluate the usage of microtremor in estimation of subsurface structure and ground response to ground motion. Ground motion amplification based on site condition of an area is an important parameter for dynamic design. Microtremor cover the characteristics in a low frequency range, while forced vibrations cover them in a high-frequency range. Microtremor consider ground characteristics and offer transfer function in area. To determine the dominant frequency, the passive microtremor measurement is performed and to determine the transfer function of test site, active microtremor measurement is performed. Microtremor measurement in the site is compared with theoretical transfer function calculated from the known structures.

  • PDF

Evaluation of Average Shear-wave Velocity Estimation Methods of Multi-layered Strata Considering Site Period (지반주기를 고려한 다층지반의 평균전단파속도 추정 방법 평가)

  • Kim, Dong-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.191-199
    • /
    • 2019
  • To calculate proper seismic design load and seismic design category, the exact site class for construction site is required. At present, the average shear-wave velocity for multi-layer soil deposits is calculated by the sum of shear-wave velocities without considering of vertical relationship of the strata. In this study, the transfer function for the multi-layered soil deposits was reviewed on the basis of the wave propagation theory. Also, the transfer function was accurately verified by the finite element model and the eigenvalue analysis. Three methods for site period estimation were evaluated. The sum of shear-wave velocities underestimated the average shear-wave velocities of 526 strata with large deviations. The equation of Mexican code overestimated the average shear-wave velocities. The equation of Japanese code well estimated the average shear-wave velocities with small deviation.

A Theoretical Study of CO Molecules on Metal Surfaces: Coverage Dependent Properties

  • Sang -H. Park;Hojing Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.5
    • /
    • pp.574-582
    • /
    • 1991
  • The CO molecules adsorbed on Ni(111) surface is studied in the cluster approximation employing EH method with self-consistent charge iteration. The effect of CO coverage is simulated by allowing the variation of valence state ionization potentials of each Ni atom in model cluster according to the self-consistent charge iteration method. The CO coverage dependent C-O stretching frequency shift, adsorption site conversion, and metal work function change are attributed to the charge transfer between metal surface and adsorbate. For CO/Ni(111) system, net charge transfer from Ni surface to chemisorbed CO molecules makes surface Ni atoms be more positive with increasing coverage, and lowers Ni surface valence band. This leads to a weaker interaction between metal surface valence band and Co $2{\pi}^{\ast}$ MO, less charge transfer to a single CO molecule, and the bule shift of C-O stretching frequency. Further increase of coverage induces the conversion of 3-fold site CO to lower coordination site CO as well as the blue shift of C-O stretching frequency. This whole process is accompanied by the continuous increase of metal work function.

Mechanism of Fatty Acid Transfer between Fatty Acid Binding Proteins and Phospolipid Model Membranes (지방산 결합단백질과 인지질막 사이의 지방산이동기전)

  • 김혜경
    • Journal of Nutrition and Health
    • /
    • v.30 no.8
    • /
    • pp.930-935
    • /
    • 1997
  • Fatty acid binging proteins(FABP) are distinct but related gene productes which are found in many mamalian cell types. FABP bind long chain fatty acids in vitro. However, their functions and mechanisms of action, in vivo, remain unknown . Also not known is whether all FABP function similaryly in their respective cell types. or whether different FABP have unique functions. The puropose of the present study was to assess whether different members of the FABP family exhibit different structural and function properties. A comparison was made between heart(H-FABP) and liver (L-FABP). The results show that the binding sites of both FABP are hydrophobic in nature, although the L-FABP site is more nonpolar than the H-FABP site. Additionally, the bound ligand experiences less motional constraint within the H-FABP binding site than within the L-FABP binding site. In accordance with these differences in structural properties, it was found that anthroyloxy-fatty acid transfer from H-FABP to membranes is markedly faster than from L-FABP. moreover, the mechanism of fatty acid transfer to phospholipid membranes appears to occur via transient collisional interactions between H-FABP and membranes. In contrast , transfer of fatty acid from L-FABP occurs via an aqueous diffusion mechanism.

  • PDF

Cytochrome c Peroxidase: A Model Heme Protein

  • Erman, James E.;Vitello, Lidia B.
    • BMB Reports
    • /
    • v.31 no.4
    • /
    • pp.307-327
    • /
    • 1998
  • Cytochrome c peroxidase (CcP) is a yeast mitochondrial enzyme which catalyzes the reduction of hydrogen peroxide to water using two equivalents of ferrocytochrome c. The CcP/cytochrome c system has many features which make it a very useful model for detailed investigation of heme protein structure/function relationships including activation of hydrogen peroxide, protein-protein interactions, and long-range electron transfer. Both CcP and cytochrome c are single heme, single subunit proteins of modest size. High-resolution crystallographic structures of both proteins, of one-to-one complexes of the two proteins, and a number of active-site mutants are available. Site-directed mutagenesis studies indicate that the distal histidine in CcP is primarily responsible for rapid utilization of hydrogen peroxide implying significantly different properties of the distal histidine in the peroxidases compared to the globins. CcP and cytochrome c bind to form a dynamic one-to-one complex. The binding is largely electrostatic in nature with a small, unfavorable enthalpy of binding and a large positive entropy change upon complex formation. The cytochrome c-binding site on CcP has been mapped in solution by measuring the binding affinities between cytochrome c and a number of CcP surface mutations. The binding site for cytochrome c in solution is consistent with the crystallographic structure of the one-to-one complex. Evidence for the involvement of a second, low-affinity cytochrome c-binding site on CcP in long-range electron transfer between the two proteins is reviewed.

  • PDF

Modulation Transfer Function (MTF) Measurement for KOMPSAT EOC image data Using Edge Method

  • Song J. H.;Lee D. H.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.489-493
    • /
    • 2004
  • The Modulation Transfer Function (MTF) is commonly used to characterize the spatial quality of imaging systems. This work is the attempt to measure the MTF for KOMPSAT EOC using the non-parametric method as ground inputs. The spatial performance of the KOMPSAT EOC was analyzed by edge method while in flight using multi-temporal image data collected over test site in Seoul. The results from this work demonstrate the potential applicability of this method to estimate MTF for high spatial resolution satellite KOMPSAT-2 that is being developed to be launched in 2005.

  • PDF

Development of nationwide amplification map of response spectrum for Japan based on station correction factors

  • Maruyama, Yoshihisa;Sakemoto, Masaki
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.17-27
    • /
    • 2017
  • In this study, the characteristics of site amplification at seismic observation stations in Japan were estimated using the attenuation relationship of each station's response spectrum. Ground motion records observed after 32 earthquakes were employed to construct the attenuation relationship. The station correction factor at each KiK-net station was compared to the transfer functions between the base rock and the surface. For each station, the plot of the station correction factor versus the period was similar in shape to the graphs of the transfer function (amplitude ratio versus period). Therefore, the station correction factors are effective for evaluating site amplifications considering the period of ground shaking. In addition, the station correction factors were evaluated with respect to the average shear wave velocities using a geographic information system (GIS) dataset. Lastly, the site amplifications for specific periods were estimated throughout Japan.

Applied 2D equivalent linear program to analyze seismic ground motion: Real case study and parametric investigations

  • Soltani, Navid;Bagheripour, Mohammad Hossein
    • Geomechanics and Engineering
    • /
    • v.30 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Seismic ground response evaluation is one of the main issues in geotechnical earthquake engineering. These analyses are subsequently divided into one-, two- and three-dimensional methods, and each of which can perform in time or frequency domain. In this study, a novel approach is proposed to assess the seismic site response using two-dimensional transfer functions in frequency domain analysis. Using the proposed formulation, a program is written in MATLAB environment and then promoted utilizing the equivalent linear approach. The accuracy of the written program is evaluated by comparing the obtained results with those of actual recorded data in the Gilroy region during Loma Prieta (1989) and Coyote Lake (1979) earthquakes. In order to precise comparison, acceleration time histories, Fourier amplitude spectra and acceleration response spectra diagrams of calculated and recorded data are presented. The proposed 2D transfer function diagrams are also obtained using mentioned earthquakes which show the amount of amplification or attenuation of the input motion at different frequencies while passing through the soil layer. The results of the proposed method confirm its accuracy and efficiency to evaluate ground motion during earthquakes using two-dimensional model. Then, studies on irregular topographies are carried out, and diagrams of amplification factors are shown.

Case Study of Dynamic Amplification Characteristics of the Seismic Stations Using Observed Seismic Waves (관측지진파를 이용한 지반증폭특성 사례분석)

  • Lee, Jundae;Kim, Junkyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.1
    • /
    • pp.35-41
    • /
    • 2009
  • It is necessary to consider the site amplification for estimating SSI (soil structure interaction) and seismic source with more confidence. The horizontal to vertical (H/V) ratio technique in spectral domain is one of several techniques to estimate empirical site transfer function. The technique, originally proposed by Nakamura (1989), is applied to analyze the surface waves in the microtremor records. However, the application of this technique has been widened to the shear wave energy of strong motions for estimating site amplification. The purpose of this paper is to estimate spectral ratio using observed data at the seismic stations distributed within Southern Korean Peninsula from the Fukuoka earthquake including 11 aftershocks. The results show that each station has the its own characteristics of the specific resonance, high-band, and low-band frequency. The characteristics of the resonance frequency is more important because the quality of the seismic records are dependent on the resonance frequency. The result can be used for the study of site classification and removal of the site amplification effects from observed records can give us more reliable seismic source parameters.

  • PDF