• 제목/요약/키워드: site specific farming

검색결과 24건 처리시간 0.039초

정밀농업의 연구 동향과 전망 (Research Trends and Their Perspectives in Precision Farming)

  • 장영창;정선옥
    • Journal of Biosystems Engineering
    • /
    • 제23권3호
    • /
    • pp.305-314
    • /
    • 1998
  • 최근 들어 농업생산기술 분야에서는 정밀농업이라는 용어 가 자주 등장하고 있으며 내용의 다양성에 기인하여 정밀농업(precision farming, precision agriculture), 처방농업(prescription farming), 국지 적 농업(site-specific filming, farming-by-the-fpot), 변량형 농업(variable rate agriculture)등의 여러 가지 명칭으로 불리고 있다. 현재 서구에서 새로운 농업의 표준이 되어 가고 있는 정밀농업의 근 특징은 기존 농업이 거시적, 통계적 접근방법임에 비교하여 미시적, 변량적 접근방법에 기초한다는 것이다.(중략)

  • PDF

분광분석법을 이용한 벼 엽록소 함량 및 번무량 센서 설계 (Sensor Design for Chlorophyll Contents and Luxuriance of Rice Using Spectrum Analysis)

  • 성제훈;정선옥;이동현;서상룡
    • 한국생물환경조절학회:학술대회논문집
    • /
    • 한국생물환경조절학회 1999년도 학술발표논문집
    • /
    • pp.75-78
    • /
    • 1999
  • 근래 들어 농업생산기술분야에서 변량적 포장 작물관리를 의미하는 정밀농업이라는 단어가 자주 등장한다. 정밀농업은 80년대 초반 미국에서 시작된 농법으로 정밀농업(precision farming or precision agriculture), 처방농업(prescription farming), 국부 특성에 맞는 작물관리(site-specific farming/management), 변량형 농업(variable rate agriculture) 등의 다양한 명칭으로 불리운다. 정밀농업의 중심과제는 포장내의 변이(variation), 즉, 토양의 이ㆍ화학 특성과 작물의 생육ㆍ수량에 나타나는 포장내의 불균형을 어떻게 평가하고 이를 기준으로 하여 어떻게 포장ㆍ작물관리를 수행하는가 하는 점이다. (중략)

  • PDF

On-the-go Nitrogen Sensing and Fertilizer Control for Site-specific Crop Management

  • Kim, Y.;Reid, J.F.;Han, S.
    • Agricultural and Biosystems Engineering
    • /
    • 제7권1호
    • /
    • pp.18-26
    • /
    • 2006
  • In-field site-specific nitrogen (N) management increases crop yield, reduces N application to minimize the risk of nitrate contamination of ground water, and thus reduces farming cost. Real-time N sensing and fertilization is required for efficient N management. An 'on-the-go' site-specific N management system was developed and evaluated for the supplemental N application to com (Zea mays L.). This real-time N sensing and fertilization system monitored and assessed N fertilization needs using a vision-based spectral sensor and controlled the appropriate variable N rate according to N deficiency level estimated from spectral signature of crop canopies. Sensor inputs included ambient illumination, camera parameters, and image histogram of three spectral regions (red, green, and near-infrared). The real-time sensor-based supplemental N treatment improved crop N status and increased yield over most plots. The largest yield increase was achieved in plots with low initial N treatment combined with supplemental variable-rate application. Yield data for plots where N was applied the latest in the season resulted in a reduced impact on supplemental N. For plots with no supplemental N application, yield increased gradually with initial N treatment, but any N application more than 101 kg/ha had minimal impact on yield.

  • PDF

Event Mean Concentration of Nitrogen and Phosphorus from a Dairy and Crop Farming Complex Watershed

  • Yoon, Kwang-Sik;Shirmohammadi, Adel;Choi, Woo-Jung;Jung, Jae-Woon
    • 한국농공학회논문집
    • /
    • 제48권7호
    • /
    • pp.65-72
    • /
    • 2006
  • Event mean concentration (EMC) of nitrogen (N) and phosphorus (P) is primary information for non-point source pollution assessment of a watershed. The EMCs for various types of agriculture such as dairy and crop farming under different climate and geologic conditions are not fully investigated. A diary- and cropfarming complex agricultural watershed in Piedmont region in Maryland, USA has been monitored for 10 years as a section 319 national monitoring program of US EPA. Dairy manure was the main source of fertilizer for crop farming in this watershed. Observed mean concentrations of N and P for each event were analyzed. Distribution of EMCs for N and P showed a wide range of variations. Representative EMCs of T-N and $NO_{3}-N$ tended to be higher than those reported for other agricultural watersheds. This study confirmed that site-specific EMC information for various agricultural practices is required for better assessment of non-point source pollution using EMC method.

Evaluation of Cropping Model of Green Manure Crops with Main Crops for Upland-Specific

  • Chung, Doug Young;Park, Misuk;Cho, Jin-Woong;Lee, Sang-Eun;Han, Kwang-Hyun;Ryu, Jin-Hee;Hyun, Seong-Hoon
    • 한국토양비료학회지
    • /
    • 제46권2호
    • /
    • pp.81-86
    • /
    • 2013
  • For organic farming, green manure crops such as leguminous forages and barley have been broadly used to improve soil fertility and soil physical and chemical properties by repeatedly cutting and mulching them directly as winter crop in the field in the rotation. In this investigation we selected 78 agricultural farm corporations as well as individual organic farmhouses related to crop rotation from greenmanure crops to main crops in order to analyze the relationship of cropping system between main crops and green manure crops. The results showed that the green manure crops were divided into two groups as leguminous and nonleguminous crops, representing that those are limited to specific climate and farming systems of regions. Also the 10 or less green manure crops including sudangrass, hairyvetch, italian ryegrass, sorghun, buckwheat, oat, pea, rye, clover, and canola which belong to leguminous crops which are presently cultivated from the organic farmhouses within the rotational crop system. We also confirmed that the major main crops are sweet potato, soybean, corn, tobacco, spinach from usage frequency analyzed by NetMiner H 2.6 which was used to estimate the rotational cropping system among the green manure crops and main crops.

Managing Within-Field Spatial Yield Variation of Rice by Site-Specific Prescription of Panicle Nitrogen Fertilizer

  • Ahn Nguyen Tuan;Shin Jin Chul;Lee Byun-Woo
    • 한국작물학회지
    • /
    • 제50권4호
    • /
    • pp.238-246
    • /
    • 2005
  • Rice yield and protein content have been shown to be highly variable across paddy fields. In order to characterize this spatial variability of rice within a field, two-year experiments were conducted in 2002 and 2003 in a large-scale rice field of $6,600m^2$ In year 2004, an experiment was conducted to know if variable rate treatment (VRT) of N fertilizer, that was prescribed for site-specific management at panicle initiation stage, could reduce spatial variation in yield and protein content of rice while increasing yield compared to conventional uniform N topdressing (UN, 33kg N/ha at PIS) method. VRT nitrogen prescription for each grid was calculated based on the nitrogen (N) uptake (from panicle initiation to harvest) required for target rice protein content of $6.8\%$, natural soil N supply, and recovery of top-dressed N fertilizer. The required N uptake for target rice protein content was calculated from the equations to predict rice yield and protein content from plant growth parameters at panicle initiation stage (PIS) and N uptake from PIS to harvest. This model· equations were developed from the data obtained from the previous two-year experiments. The plant growth parameters for the calculation of the required N were predicted non-destructively by canopy reflectance measurement. Soil N supply for each grid was obtained from the experiment of year 2003, and N recovery was assumed to be $60\%$ according to the previous reports. The prescribed VRT N ranged from 0 to 110kg N/ha with an average of 57kg/ha that was higher than 33 kg/ha of UN. The results showed that VRT application successfully worked not only to reduce spatial variability of rice yield and protein content but also to increase rough rice yield by 960kg/ha. The coefficient of variation (CV) for rice yield and protein content was reduced significantly to $8.1\%$ and $7.1\%$ in VRT from $14.6\%$ and $13.0\%$ in UN, respectively. And also the average protein content of milled rice in VRT showed very similar value of target protein content of $6.8\%$. In conclusion the procedure used in this paper was believed to be reliable and promising method for reducing within-field spatial variability of rice yield and protein content. However, inexpensive, reliable, and fast estimation methods of natural N supply and plant growth and nutrition status should be prepared before this method could be practically used for site-specific crop management in large-scale rice field.

토양특성(土壤特性)에 따른 질소시용(窒素施用)의 환경(環境) 경제적(經濟的) 효과(效果) (Effects of the Site-Specific Nitrogen Management on Economic Feasibility and Environmental Sustainability)

  • 강충관;박주섭;이상용;김한명
    • 한국토양비료학회지
    • /
    • 제34권1호
    • /
    • pp.42-54
    • /
    • 2001
  • 질소비료는 작물의 생장에 있어서 가장 핵심적인 영양소라 할 수 있으며, 질소의 효율적 이용은 안정적인 수확량의 확보 뿐만 아니라 비용절감 및 환경오염원 감축 등 다양한 편익을 제공할 수 있을 것이다. 정밀농업은 토양의 특성에 따라 작물에 필요한 적정량의 시비로 영양분의 이용효율을 높임으로써 환경 경제적 편익을 동시에 추구하는 농법이라 할 수 있다. 본 연구는 GIS를 이용하여 구축한 455개 표본농경지의 토양 및 지형에 관한 Database에 근거하여 각 농경지내에서 토양을 세분하여 적정 시비를 할 경우(site-specific management)와 농경지별 적정 시비를 하였을 경우(uniform rate application) 비료의 사용량, 수확량, 수질오염 정도 등을 EPIC모델을 이용하여 비교분석 하였다. 전체 농경지에서의 가중평균적인 환경 경제적 효과는 큰 차이를 보이지 않지만 각각의 농경지가 다양한 토양으로 구성되어 있고 다양한 토양에 대한 최적의 질소량이 큰 차이를 나타낼 때는 정밀농업의 실천이 경제적 및 환경적 측면에서 충분한 잠재력이 있는 것으로 나타났다.

  • PDF

지하수 오염 취약성 기법의 비교 적용 연구: 충남 홍성군 금마면 일대에의 적용 (A Comparative Study of Groundwater Vulnerability Assessment Methods: Application in Gumma, Korea)

  • 기민규;윤희성;고동찬;함세영;이충모;김현수
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권3호
    • /
    • pp.119-133
    • /
    • 2013
  • In the present study, several groundwater vulnerability assessment methods were applied to an agricultural area of Gumma in Korea. For the groundwater intrinsic vulnerability assessment, the performance of DRASTIC, SINTACS and GOD models was compared and an ensemble approach was suggested. M-DRASTIC and multi-linear regression (MLR) models were applied for the groundwater specific vulnerability assessment to nitrate of the study site. The correlation coefficient between the nitrate concentration and M-DRASTIC index was as low as 0.24. The result of the MLR model showed that the correlation coefficient is 0.62 and the areal extents of livestock farming and upland field are most influential factors for the nitrate contamination of groundwater in the study site.

Modeling Soil Temperature of Sloped Surfaces by Using a GIS Technology

  • Yun, Jin I.;Taylor, S. Elwynn
    • 한국작물학회지
    • /
    • 제43권2호
    • /
    • pp.113-119
    • /
    • 1998
  • Spatial patterns of soil temperature on sloping lands are related to the amount of solar irradiance at the surface. Since soil temperature is a critical determinant of many biological processes occurring in the soil, an accurate prediction of soil temperature distribution could be beneficial to agricultural and environmental management. However, at least two problems are identified in soil temperature prediction over natural sloped surfaces. One is the complexity of converting solar irradiances to corresponding soil temperatures, and the other, if the first problem could be solved, is the difficulty in handling large volumes of geo-spatial data. Recent developments in geographic information systems (GIS) provide the opportunity and tools to spatially organize and effectively manage data for modeling. In this paper, a simple model for conversion of solar irradiance to soil temperature is developed within a GIS environment. The irradiance-temperature conversion model is based on a geophysical variable consisting of daily short- and long-wave radiation components calculated for any slope. The short-wave component is scaled to accommodate a simplified surface energy balance expression. Linear regression equations are derived for 10 and 50 cm soil temperatures by using this variable as a single determinant and based on a long term observation data set from a horizontal location. Extendability of these equations to sloped surfaces is tested by comparing the calculated data with the monthly mean soil temperature data observed in Iowa and at 12 locations near the Tennessee - Kentucky border with various slope and aspect factors. Calculated soil temperature variations agreed well with the observed data. Finally, this method is applied to a simulation study of daily mean soil temperatures over sloped corn fields on a 30 m by 30 m resolution. The outputs reveal potential effects of topography including shading by neighboring terrain as well as the slope and aspect of the land itself on the soil temperature.

  • PDF

강화도 남단에 도래하는 도요새들의 해안 내륙 휴식지 이용과 이들의 이용에 영향을 미치는 환경요인들 (Environmental factors affecting roost use of shorebirds in the southern Kanghwa Island, Republic of Korea)

  • 김관목;문영민;유정칠
    • 한국습지학회지
    • /
    • 제15권2호
    • /
    • pp.251-264
    • /
    • 2013
  • 도요 물떼새들은 만조시에 해안 내륙 휴식지에서 휴식을 취하는데, 휴식지를 선택할 때 여러 가지 요소들을 고려한다. 우리는 도요 물떼새 8종(알락꼬리마도요 Numenius madagascariensis, 청다리도요 Tringa nebularia, 큰뒷부리도요 Limosa lapponica, 개꿩 Pluvialis squatarola, 민물도요 Calidris alpine, 중부리도요 Numenius phaeopus, 마도요 Numenius arquata, 뒷부리도요 Xenus cinereus)을 대상으로 휴식지의 시공간적 이용과 그 이용에 영향을 미치는 요인들을 분석하였다. 휴식지 내 고인 물의 면적과 길이, 기온, 풍속, 종별로 이동시기, 방해정도를 변수로 고려하였다. 시공간적으로, 이용하는 종이 달랐으며 개체수 또한 변동을 거듭하였다. 그리고 도요 물떼새의 휴식지 이용에 영향을 미치는 요인은 종-특이적이었다. 연구지역의 휴식지는 폐장한 새우양식장이었으나 조사 기간 중 염생습지에서 자라는 함초 Salicornia herbacea 농장으로 전환하였다. 휴식지가 필요한 상황에서, 도요 물떼새들의 생태를 기초로 해서 기존 휴식지를 관리할 것을 권한다. 더불어, 여름철 가뭄에는 양식장의 수문을 열어주어 도요 물떼새들이 물을 이용해 체온관리를 할 수 있게 해주고, 만조시 도요 물떼새들이 양식장 안으로 날아 들어올 수 있도록 새들이 휴식지를 찾기 시작하는 만조 전네 시간부터는 농장 작업을 안 할 것을 권한다.