• Title/Summary/Keyword: sintering at low temperature sintered properties

Search Result 234, Processing Time 0.022 seconds

Low Temperature Sintering and Dielectric Properties of $Sr_2$($Ta_{1-x}$$Nb_{x}$)$_2$$O_{7}$ Ceramics ($Sr_2$($Ta_{1-x}$$Nb_{x}$)$_2$$O_{7}$ 세라믹스의 저온소성과 유전특성)

  • 남효덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.8-12
    • /
    • 1994
  • Solid solutions $Sr_2$($Ta_{1-x}$$Nb_{x}$)$_2$$O_{7}$ (x = 0.0 - 1.0) composed of strontium-tantalate (low Curie temperature) and strontium-niobate (high Curie temperature) were prepared by the conventional mixed oxide method and the molten salt synthesis method (flux method). Phase relation, sintering temperature, grain-orientation and dielectric properties were investigated for sintered ceramic samples with different compositions. Both Curie temperature and dielectric constant at Curie temperature were increased, and sintering behavior and the degree of grain-orientation were improved with the increase of Nb content. Single phase $Sr_2$$Nb_2$$O_{7}$ powder was synthesized by using flux method at lower temperatures, and sintering temperature was also reduced by using flux method derived powder than using mixed-oxide derived powder. Sintering characteristics and dielectric properties of specimens prepared by flux method were better than those derived through the conventional method.

Dielectric Properties of Complex Microstructure for High Strength LTCC Material (고강도 LTCC 소재을 위한 복합구조의 유전특성)

  • Kim, Jin-Ho;Hwang, Seong-Jin;Sung, Woo-Kyung;Kim, Hyung-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.309-309
    • /
    • 2007
  • The LTCCs (low-temperature co-fired ceramics) are very important for electronic industry to build smaller RF modules and to fulfill the necessity for miniaturization of devices in wireless communication industry. The dielectric materials with sintering temperature $T_{sint}$<$900^{\circ}C$ are required. In this study, we investigated with glass-ceramic composition, which was crystallized with two crystals. The microstructure, crystal phases, thermal and mechanical properties, and dielectric properties of the composites were investigated using FE-SEM, XRD, TG-DTA, 4-point bending strength test and LCR measurement. The starting temperature for densification of a sintered body was at $779{\sim}844^{\circ}C$ and the glass frits were formatted to the crystal phases, $CaAl_2Si_2O_8$(anorthite) and $CaMgSi_O_6$(diopside), at sintering temperature. The sintered bodies exhibited applicable dielectric properties, namely 6-9 for ${\varepsilon}_r$. The results suggest that the glass-ceramic composite would be potentially possible to application of low dielectric L TCC materials.

  • PDF

Piezoelectric and Dielectric Properties of Low Temperature Sintering PMN-PZN-PZT Ceramics according to the Milling Time (밀링 시간에 따른 저온소결 PMN-PZN-PZT 세라믹스의 압전 및 유전특성)

  • Yoo, Ju-Hyun;Lee, Il-Ha;Lee, Kab-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1039-1043
    • /
    • 2007
  • In this paper, in order to develop low temperature sintering ceramics for multilayer piezoelectric actuator application, PMN-PZN-PZT ceramics were fabricated using $LiCO_3,\;Bi_2O_3$ and CuO as sintering aids. And also, their piezoelectric and dielectric properties were investigated according to the milling time. All the specimens sintered at $930\;^{\circ}C$ showed tetragonal phases without secondary phases. With increasing milling time, piezoelectric and dielectric characteristic of specimens increased up to 60 hours milling time and then decreased due to the agglomeration of fine particle. Accordingly, it seems that 60 hour is optimum milling condition. At the sintering temperature of $930\;^{\circ}C$ and milling time of 60 hour, density, dielectric constant(${\varepsilon}_r$), electromechanical coupling factor (kp), mechanical quality factor (Qm), piezoelectric d constant showed the optimum value of $7.95\;g/m^3$, 1382, 0.546, 1749, 330 pC/N, respectively for multilayer piezoelectric actuator application.

Electrical Properties of Pr-doped ZnO Varistors (Pr-첨가 ZnO 바리스터의 전기적 특성)

  • 곽민환;이상기;조성걸
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.12
    • /
    • pp.1275-1281
    • /
    • 1997
  • ZnO varistors containing 5.0 at% Co3O4 and Pr6O11, ranging from 0.1 to 1.0 at%, were sintered at 130$0^{\circ}C$ and 135$0^{\circ}C$. The I-V characteristics and nonlinear coefficients of the specimens were investigated with respect to Pr addition and sintering temperature. In general the specimens sintered at 130$0^{\circ}C$ showed better varistor characteristic than those fired at 135$0^{\circ}C$, which seemed to be related with the liquid phase formation during sintering. The barrier heights obtained from C-V relations, 0.29-1.36 eV, were different from those acquired using resistivity-temperature plots measured at low voltage per grain boundary. Therefore the estimation of potential barrier heights using C-V relations is better suited for the specimens prepared in this study. The carrier densities obtained using C-V relations were ~1018 cm-3.

  • PDF

Fabrication of Injection Molded Fe-50%Ni Sintered Bodies (사출성형된 Fe-50%Ni 소결체의 제조)

  • Kim Ki-Hyun;Yoon Hyeong-Chul;Choi Chul-Jin;Lee Byong-Taek
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.472-476
    • /
    • 2004
  • The Fe-Ni compact bodies were fabricated using Fe-Ni mixed powders with 50 nm in diameter by injection molding process. The relationship between microstructure and material properties was characterized with respect to the volume ratio of powder/binder and sintering temperature with SEM and TEM. In the compact body having the volume percent ratio of 45(Fe-Ni) : 55(binder), which was sintered at $900^{\circ}C$ the values of relative density and hardness were low about 97.7% and 277.1 Hv, respectively. Using the composition of 50(Fe Ni) : 50(binder) and sintered at $900^{\circ}C$, the values of relative density and hardness were 98.5%, 294.4 Hv, respec-tively. The grain size of sintered bodies strongly depended on the sintering temperature. In both samples sintered at $600^{\circ}C$ and $900^{\circ}C$, the average grain sizes were about 150 nm and 500 nm in diameter, respectively.

Piezoelectric Characteristics of Low temperature sintering PMW-PMN-PZT Ceramics for Piezoelecric Transformer (저온소결 압전변압기용 PMW-PMN-PZT 의 압전특성)

  • Lee, Hyun-Seok;Chung, Kwang-Hyun;Yoo, Ju-Hyun;Park, Chang-Yub;Ryu, Sung-Lim;Jeong, Yeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.214-215
    • /
    • 2005
  • In this paper, in order to develop low temperature sintering piezoelectric ceramics for piezoelectric transformer, PMW-PMN-PZT ceramics using 0.25wt%$CaCO_3$ and 0.2wt%$Li_2CO_3$ as sintering aids were fabricated according to the variation of amount of PMW and Zr/Ti ratio. Specimens could be sintered at 900$^{\circ}C$ by adding sintering aids. As Zr/Ti ratio was increased, kp was increased and Qm was decreased by approaching MPB region, and kp showed the largest value of 0.58 at Zr/Ti:50/50. The variation of amount of PMN substitution affected the liquid phase sintering of the ceramics using sintering aids, and decreased piezoelectric properties.

  • PDF

Microwave Dielectric Properties of Low-temperature Sintered $MgCo_2(VO_4)_2$ Ceramics (저온소결 $MgCo_2(VO_4)_2$ 세라믹스의 마이크로파 유전특성)

  • Lee, Ji-Hun;Bang, Jae-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.435-438
    • /
    • 2004
  • The effects sintering additives such as $xwt%(0.242Bi_2O_3-0.782V_2O_5)$ on the microwave dielectric and sintering properties of $MgCo_2(VO_4)_2$ ceramics were investigated. Highly dense samples were obtained for $MgCo_2(VO_4)_2$ at the sintering temperature of $950^{\circ}C$ with $0.242Bi_2O_3-0.758V_2O_5$ additions of $0.5{\sim}5wt%$. The microwave dielectric properties of $MgCo_2(VO_4)_2$ with $0.5wt%(0.242Bi_2O_3-0.758V_2O_5)$ sintered at $950^{\circ}C$ were as follows : $Q{\times}f_0\;=\;45,375GHz,\;\epsilon_r\;=\;9.7\;and\;\tau_f\;=\;-23.2ppm/^{\circ}C$.

  • PDF

Low Temperature Sintering and Microwave Dielectric Properties of Ca[Ti1-x(Ni1/3Nb2/3)x]O3 Ceramics (Ca[Ti1-x(Ni1/3Nb2/3)x]O3 세라믹스의 저온소결 및 마이크로파 유전특성)

  • Lee, Young-Gyu;Kim, Hyo-Tae;Nam, Joong-Hee;Kim, Jong-hee;Paik, Ungyu
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.1 s.284
    • /
    • pp.55-61
    • /
    • 2006
  • The microwave dielectric properties and low temperature sintering of $Ca[Ti_{1-x}(Ni_{1/3}Nb_{2/3})_x]O_3$ system were investigated at the sintering temperature $1,200\~1,350^{\circ}C$. The density and quality factors $(Q{\times}f)$ increased while dielectric constants slightly decreased with the decrease of Ti. The dielectric constant, quality factor, and temperature coefficient of resonance frequency $(\tau_f)$ were 64, 17,000 GHz, and $-9.1\;ppm/^{\circ}C$ respectively, when $CaTi_{1/2}(Ni_{1/3}Nb_{2/3})_{1/2}O_3$ ceramics were sintered at $1,300^{\circ}C$ for 4 h. $2Li_2O-B_2O_3$ was added to $CaTi_{1/2}(Ni_{1/3}Nb_{2/3})_{1/2}O_3$ to decrease the sintering temperature for LTCC application. The microwave dielectric properties of the samples sintered at $925^{\circ}C$ for 2 h with the addition of $6\;wt\%\;2Li_2O-B_2O_3$ were $\varepsilon_r=48.7,\;Q{\times}f=8,460\;GHz$, and $\tau_f=+5.6ppm/^{\circ}C$. Compatibility test of the composition with silver electrode shows no reaction with silver electrode, implying the feasibility as a high-K LTCC material.

A Study on Microwave Dielectric Properties of Low-Temperature Sintered (Zn0.8Mg0.2)TiO3 Ceramics (저온소결 (Zn0.8Mg0.2)TiO3 세라믹의 마이크로파 유전특성에 관한 연구)

  • 방재철;심우성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.7
    • /
    • pp.604-610
    • /
    • 2003
  • The effects of sintering additives such as B $i_2$ $O_3$ and $V_2$ $O_{5}$ on the microwave dielectric and sintering properties of (Z $n_1$$_{-xM}$ $g_{x}$)Ti $O_3$ system were investigated. Highly dense samples were obtained for (Z $n_{0.8}$M $g_{0.2}$)Ti $O_3$ at the sintering temperature range of 870~90$0^{\circ}C$ with B $i_2$ $O_3$ and $V_2$ $O_{5}$ additions of 〈1 wt.%, respectively. The microwave dielectric properties of (Z $n_{0.8}$M $g_{0.2}$)Ti $O_3$ with 0.45 wt.%B $i_2$ $O_3$ and 0.55 wt.% $V_2$ $O_{5}$ sintered at 90$0^{\circ}C$ were as follows : Q$\times$ $f_{o}$ = 50,800 GHz, $\varepsilon$$_{r}$ = 22, and $\tau$$_{f}$ = -53 ppm/$^{\circ}C$. In order to improve temperature coefficient of resonant frequency, Ti $O_2$ was added to the above system. The optimum amount of Ti $O_2$ was 15 moi.% when sintered at 87$0^{\circ}C$, at which we could obtain following results: Q$\times$ $f_{o}$ = 32,800 GHz, $\varepsilon$$_{r}$ = 26, and$\tau$$_{f}$ = 0 ppm/$^{\circ}C$.EX>.EX>.EX>.EX>.EX>.EX>.EX>.

Dielectric and Piezoelectric Characteristics of Low Temperature Sintering 0.20Pb(Zn1/3Nb2/3)O3-0.80Pb(Zr0.48Ti0.52)O3 Ceramics with the Addition of Sintering Aid ZnO (소결조제 ZnO 첨가에 따른 저온소결 0.20Pb(Zn1/3Nb2/3)O3-0.80Pb(Zr0.48Ti0.52)O3 세라믹스의 유전 및 압전특성)

  • Yoo, Ju-Hyun;Lee, Yu-Hyong;Kim, Do-Hyung;Lee, Il-Ha;Kwon, Jun-Sik;Paik, Dong-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.126-130
    • /
    • 2008
  • In this study, in order to develop low loss multilayer piezoelectric actuator, PZN-PZT ceramics were fabricated using $Li_2CO_3,\;Bi_2O_3$, CuO and ZnO as sintering aids, their structural, piezoelectric and dielectric characteristics were investigated according to the amount of ZnO addition, At the sintering temperature of $870^{\circ}C$, the density, electromechanical coupling factor(kp), mechanical quality factor(Qm), dielectric constant(${\epsilon}_r$) and piezoelectric constant($d_{33}$) of 0.4 wt% ZnO added specimen (sintered at $870^{\circ}C$) showed the optimum value of $7.812g/cm^3$, 0.535, 916, 1399, 335 pC/N respectively. Taking into consideration above piezoelectric properties of the specimen sintered at low temperature, it was concluded that PZN-PZT ceramics using 0.4 wt% ZnO as additive showed the optimum characteristics as the composition ceramics for low loss multilayer piezoelectric actuator application.