• Title/Summary/Keyword: sintered magnet

Search Result 74, Processing Time 0.022 seconds

Effect of Small Additives on the Microstructure of Strip-Cast Nd-Fe-B Alloys (소량의 첨가원소가 Strip-Cast Nd-Fe-B 향금의 미세 조직 형성에 미치는 영향)

  • Lee, D.H.;Jang, T.S.;Kim, D.H.;Kim, Andrew-S.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.5
    • /
    • pp.196-200
    • /
    • 2004
  • In order to improve dendritic formation of Nd$_2$Fe$\_$14/B phase in the strip-cast Nd-Fe-B alloys that are frequently used for production of high energy sintered magnets, effect of small substitutional additives such as Cu (0.3~1.0 at. %) and Co (0.5~1.5 at.%) on the phase formation and microstructures of the strip-cast alloys based on Nd$\_$14/Fe$\_$80/B$\_$6/ were investigated. As the amount of Cu addition increased, formation of Nd$_2$Fe$\_$14/B dendrites along the direction normal to the strip surface was suppressed with the reduction of the strip thickness mainly due to the increase of fluidity of the melt. However, both the dendrites and their <001> preferred orientation along the direction normal to the strip surface were improved with the increase of the strip thickness as the amount of Co addition increased. The dendrites became finer after small amount of Cu or Co was added. While small copper additions tended to stabilize the formation of primary Fe, small cobalt additions suppressed it. When small amount of Zr was added, however, the dendrite structures were totally collapsed with excessive grain growth of Nd$_2$Fe$\_$14/B.

Magnetic properties of Sr-ferrite by La-Co substitution (La-Co 치환량에 따른 스트론튬 페라이트의 자기특성)

  • 장세동
    • Resources Recycling
    • /
    • v.11 no.5
    • /
    • pp.16-20
    • /
    • 2002
  • This experiment was carried out to examine the effects of La-Co substitution on Sr-ferrite. The magnetic properties of calcined and sintered materials varied with the substitutional amount of La and Co elements in Sr-ferrite. Anisotropy field and coercivity for Sr ferrite were increased with raising La-Co substitution amounts. The microstructure observation for Sr ferrite substituted by La-Co revealed that La-Co inhabited grain growth during calcination and promoted lateral grain growth during sintering. The relationship between $B_{r}$ and $_{i}$ /$H_{c}$ for La-Co substituted Sr-ferrite was found to be $B_{r}$$≒0.097_{i}$ /$H_{c}$/+4500. In case of $SrFe_{12}$ $O_{19}$, $B_{r} was 4090 G and $_{ i}$$H_{c}$ was 3560 Oe, but $B_{r}$ was 4080 G and and $_{i}$ $H_{c}$ was 4800 Oe for $Sr_{0.7}$ $La_{0.3}$ $Fe_{11.7}$ /$Co_{0.3}$ $O_{19}$.

Effects of ${Co_3}{O_4}$, and ${La_2}{O_3}$on the Magnetic Properties of Sr-Ferrite (${Co_3}{O_4}$${La_2}{O_3}$ 첨가가 Sr 페라이트의 자기적 특성에 미치는 영향)

  • Jang, Se-Dong;Kim, Chong-O;Kim, Jong-Hui
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.685-689
    • /
    • 2001
  • We carried out these experiments to examine the effects of element substitution of Co and La-Co for Sr-ferrite. The calcined properties of Co and La-Co element substitution were examined, and also the sintered magnetic properties were measured with the stoichiometric condition. The magnetic properties of $(La-Co)_{0.3}-SrM$ composition are as follows; $(M_s)$: 71.08 emu/g, $iH_c$: 4.38 kOe and $B_r$ : 4.18 kG, $iH_ c$ :4.35 kOe, $BH_{max}$: 4.3 MGOe. The $BH_{max}$ value was increased up to 10 % compared with conventional values. Our results imply that the magnetic properties of Sr-ferrite can be improved by the substitution of those elements.

  • PDF

Growth and Physiological Characteristics of Five Common Foliage Plant Species Grown under the Influence of Static Magnetic Field (정자기장 처리에 따른 실내 관엽식물의 생육 및 생리적 특성 변화)

  • Lee, Seong Han;Woo, Su Young;Kwak, Myung Ja
    • Horticultural Science & Technology
    • /
    • v.30 no.5
    • /
    • pp.484-492
    • /
    • 2012
  • The present study aimed to investigate the effect of static magnetic field (SMF) on the growth and physiological characteristics of common indoor plant species. Five foliage plant species, Spathiphyllum spp., Ardisia pusilla DC., Syngonium podophyllum, Peperomia pereskiifolia, and Pilea cadierei were potted into plastic pot equipped with round type anisotropic sintered NdFeB permanent magnet inside the pot. The surface magnetic flux density of each magnet was 3,500 G. After 6 months of growth period, the biomass accumulations of Spathiphyllum, A. pusilla, and P. cadierei under SMF were statistically higher than those of controls. Tissue water content also increased under the influence of SMF in most species. The photosynthetic rate of Spathiphyllum under SMF significantly increased but other species showed no significant difference compared with control. Although there was no significant increase in the photosynthetic rates of A. pusilla, and P. cadierei, they showed remarkable increase in total fresh weight under SMF. This suggests that the demand of assimilates for normal metabolism could be decreased under magnetic influence and thereby biomass accumulation could be more favored. But this is not always true for all plant species because P. pereskiifolia in this experiment, showed no changes in both photosynthetic rate and biomass accumulation. Leaf nitrogen and chlorophyll contents were enhanced significantly in most plant species under influence of SMF. Chlorophyll a/b ratio also increased by SMF. Although there might be a limitation depending on plant species, these results suggest that long-term exposure to SMF might allow plant to have an enhanced acclimation capacity against environmental fluctuations and optimal application of SMF could increase the practical use of indoor plants such as an attempt to improve indoor air quality.