• Title/Summary/Keyword: sintered bearings

Search Result 12, Processing Time 0.016 seconds

Improvement in Tensile Strength, Scratch Resistance and Tribological Performance of Cu-based Bimetals by Surface Modification Technology (표면개질 기술에 의한 Cu 기반 바이메탈의 인장강도, 스크래치 저항성 및 트라이볼로지 성능 향상)

  • Karimbaev, R.;Amanov, A.
    • Tribology and Lubricants
    • /
    • v.37 no.3
    • /
    • pp.83-90
    • /
    • 2021
  • In this study, an ultrasonic nanocrystal surface modification (UNSM) was used to improve the mechanical properties, scratch resistance and tribological performance of Cu-based bimetals, which are usually used to manufacture sliding bearings and bushings for internal combustion engines (ICEs). Two different Cu-based bimetals, namely CuPb10Sn10 and CuSn10Bi7, were sintered onto a low carbon steel substrate. The mechanical properties and dry tribological performance using a tensile tester and micro-tribo tester were evaluated, respectively. The scratch resistance was assessed using a micro-scratch tester at an incremental load. The tensile test results showed that the yield strength (YS) and ultimate tensile strength (UTS) of both Cu-based bimetals increased after UNSM. Furthermore, the scratch and tribological tests results revealed that the scratch resistance and tribological performance of both Cu-based bimetals were improved by the application of UNSM. These improvements were mainly attributed to the eliminated pores, increased hardness and reduced roughness after UNSM. CuSn10Bi7 demonstrated better mechanical properties, scratch resistance and tribological performance than CuPb10Sn10. It was found that the presence of Bi in CuSn10Bi7 formed a Cu11Bi7 intermetallic phase, which is harder than Cu3Sn. Hence, CuSn10Bi7 demonstrated higher strength and wear resistance than CuPb10Sn10. In addition, a CuSn10Bi7 formed both SnO2 and Bi2O3 that prevented adhesion and improved the tribological performance. It can be expected that under dry tribological conditions, ICEs can utilize UNSM bearings and bushings made of CuSn10Bi7 instead of CuPb10Sn10 under oil-lubricated conditions.

A Study of Sliding Friction and Wear Properties of Bronze added $Cu_2S$ as Solid Lubricants (고체윤활제 $Cu_2S$첨가 청동의 미끄럼 마찰마모특성 연구)

  • Lee Hanyoung;Kim Taejun;Cho Yongjae
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.60-65
    • /
    • 2004
  • [ $MoS_2S$ ] is a well-known metal sulfide applied as solid lubricants and an additive to prolong the life of sintered bearings under severe conditions. However, the high price of $MoS_2S$ limited its wide application. This study is aimed to investigated the possibility for application to solid lubricants for $Cu_2S$ as a substitute of v. Bronzes added $Cu_2S$ and $MoS_2S$ are produced by powder metallurgy in this study, and then evaluated their friction and wear properties. The sliding wear test using pin-on-disc type machine, was conducted at several sliding speeds for three type test pieces, bronze and bronzes added $Cu_2S/MoS_2$. Addition of $Cu_2S$ to bronze leads to relatively good friction and wear properties, although it is not so good as addition of $MoS_2S$. But the properties of bronze added $Cu_2S/MoS_2$ would be not suitable for the condition under the high sliding speed.

  • PDF