• Title/Summary/Keyword: singularly perturbed

Search Result 73, Processing Time 0.026 seconds

SOLVING SECOND ORDER SINGULARLY PERTURBED DELAY DIFFERENTIAL EQUATIONS WITH LAYER BEHAVIOR VIA INITIAL VALUE METHOD

  • GEBEYAW, WONDWOSEN;ANDARGIE, AWOKE;ADAMU, GETACHEW
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.331-348
    • /
    • 2018
  • In this paper, an initial value method for solving a class of singularly perturbed delay differential equations with layer behavior is proposed. In this approach, first the given problem is modified in to an equivalent singularly perturbed problem by approximating the term containing the delay using Taylor series expansion. Then from the modified problem, two explicit Initial Value Problems which are independent of the perturbation parameter, ${\varepsilon}$, are produced: the reduced problem and boundary layer correction problem. Finally, these problems are solved analytically and combined to give an approximate asymptotic solution to the original problem. To demonstrate the efficiency and applicability of the proposed method three linear and one nonlinear test problems are considered. The effect of the delay on the layer behavior of the solution is also examined. It is observed that for very small ${\varepsilon}$ the present method approximates the exact solution very well.

AN INITIAL VALUE METHOD FOR SINGULARLY PERTURBED SYSTEM OF REACTION-DIFFUSION TYPE DELAY DIFFERENTIAL EQUATIONS

  • Subburayan, V.;Ramanujam, N.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.221-237
    • /
    • 2013
  • In this paper an asymptotic numerical method named as Initial Value Method (IVM) is suggested to solve the singularly perturbed weakly coupled system of reaction-diffusion type second order ordinary differential equations with negative shift (delay) terms. In this method, the original problem of solving the second order system of equations is reduced to solving eight first order singularly perturbed differential equations without delay and one system of difference equations. These singularly perturbed problems are solved by the second order hybrid finite difference scheme. An error estimate for this method is derived by using supremum norm and it is of almost second order. Numerical results are provided to illustrate the theoretical results.

An H Output Feedback Control for Uncertain Singularly Perturbed T-S Fuzzy Systems

  • Yoo, Seog-Hwan;Wu, Xue-Dong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.6
    • /
    • pp.840-847
    • /
    • 2009
  • This paper deals with an $H_{\infty}$ output feedback controller design for uncertain singularly perturbed T-S fuzzy systems. Integral quadratic constraints are used to describe various kinds of uncertainties of the plant. It is shown that the $H_{\infty}$ norm of the uncertain singularly perturbed fuzzy system is less than $\gamma$ for a sufficiently small $\varepsilon$ > 0 if the $H_{\infty}$ norms of both the slow and fast subsystem are less than $\gamma$. Using this fact, we develop a linear matrix inequality based design method which is independent of the singular perturbation parameter $\varepsilon$. A numerical example is provided to demonstrate the efficacy of the proposed design method.

UNIFORMLY CONVERGENT NUMERICAL SCHEME FOR SINGULARLY PERTURBED PARABOLIC DELAY DIFFERENTIAL EQUATIONS

  • WOLDAREGAY, MESFIN MEKURIA;DURESSA, GEMECHIS FILE
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.623-641
    • /
    • 2021
  • In this paper, numerical treatment of singularly perturbed parabolic delay differential equations is considered. The considered problem have small delay on the spatial variable of the reaction term. To treat the delay term, Taylor series approximation is applied. The resulting singularly perturbed parabolic PDEs is solved using Crank Nicolson method in temporal direction with non-standard finite difference method in spatial direction. A detail stability and convergence analysis of the scheme is given. We proved the uniform convergence of the scheme with order of convergence O(N-1 + (∆t)2), where N is the number of mesh points in spatial discretization and ∆t is mesh length in temporal discretization. Two test examples are used to validate the theoretical results of the scheme.

A NEW APPROACH FOR STABILIZATION OF NONSTENDAD SINGULARLY PERTYRBED SYSTEMS

  • Xu, Hua;Mukaidani, Hiroaki;Mizukami, Koichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.99-102
    • /
    • 1995
  • In this paper, we consider the stabilization problem of nonstandard singularly perturbed systems by using state feedback. Different fro the existing sequenetial designn procedures, we propose a parallel design method to construct the stabilizing controller. The method involves solving two completely independent algebraic Riccati equations.

  • PDF

$H_{\infty}$ Composite Control for Singularly Perturbed Nonlinear Systems via Successive Galerkin Approximation

  • Kim, Young-Joong;Kim, Beom-Soo;Shin, Eun-Chul;Yoo, Ji-Yoon;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.407-412
    • /
    • 2004
  • This paper presents a new algorithm for the closed-loop $H_{\infty}$ composite control of singularly perturbed nonlinear systems with a exogenous disturbance, using the successive Galerkin approximation(SGA). The singularly perturbed nonlinear system is decomposed into two subsystems of a slow-time scale and a fast-time scale via singular perturbation theory, and two $H_{\infty}$ control laws are obtained to each subsystem by using the SGA method. The composite control law that consists of two $H_{\infty}$ control laws of each subsystem is designed. One of the purposes of this paper is to design the closed-loop $H_{\infty}$ composite control law for the singularly perturbed nonlinear systems via the SGA method. The other is to reduce the computational complexity when the SGA method is applied to the high order systems.

  • PDF

An H Output Feedback Control for Singularly Perturbed Fuzzy Systems (특이섭동 퍼지시스템의 H 출력 궤환제어)

  • Yoo, Seog-Hwan;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.316-323
    • /
    • 2004
  • This paper deals with an $H_{\infty}$ output feedback controller design for singularly perturbed T-S fuzzy systems. It is shown that the $H_{\infty}$ norm of the singularly perturbed T-S fuzzy system is less than ${\gamma}$ for a sufficiently small ${\varepsilon}$>0 if the $H_{\infty}$ norms of both the slow and fast subsystem are less than ${\gamma}$. Using this fact, we develop a linear matrix inequality based design method which is independent of the singular perturbation parameter ${\varepsilon}$. A numerical example is provided to demonstrate the efficacy of the proposed design method.

EXPONENTIALLY FITTED NUMERICAL SCHEME FOR SINGULARLY PERTURBED DIFFERENTIAL EQUATIONS INVOLVING SMALL DELAYS

  • ANGASU, MERGA AMARA;DURESSA, GEMECHIS FILE;WOLDAREGAY, MESFIN MEKURIA
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.3_4
    • /
    • pp.419-435
    • /
    • 2021
  • This paper deals with numerical treatment of singularly perturbed differential equations involving small delays. The highest order derivative in the equation is multiplied by a perturbation parameter 𝜀 taking arbitrary values in the interval (0, 1]. For small 𝜀, the problem involves a boundary layer of width O(𝜀), where the solution changes by a finite value, while its derivative grows unboundedly as 𝜀 tends to zero. The considered problem contains delay on the convection and reaction terms. The terms with the delays are approximated using Taylor series approximations resulting to asymptotically equivalent singularly perturbed BVPs. Inducing exponential fitting factor for the term containing the singular perturbation parameter and using central finite difference for the derivative terms, numerical scheme is developed. The stability and uniform convergence of difference schemes are studied. Using a priori estimates we show the convergence of the scheme in maximum norm. The scheme converges with second order of convergence for the case 𝜀 = O(N-1) and for the case 𝜀 ≪ N-1, the scheme converge uniformly with first order of convergence, where N is number of mesh intervals in the domain discretization. We compare the accuracy of the developed scheme with the results in the literature. It is found that the proposed scheme gives accurate result than the one in the literatures.

A NON-ASYMPTOTIC METHOD FOR SINGULARLY PERTURBED DELAY DIFFERENTIAL EQUATIONS

  • File, Gemechis;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.39-53
    • /
    • 2014
  • In this paper, a non-asymptotic method is presented for solving singularly perturbed delay differential equations whose solution exhibits a boundary layer behavior. The second order singularly perturbed delay differential equation is replaced by an asymptotically equivalent first order neutral type delay differential equation. Then, Simpson's integration formula and linear interpolation are employed to get three term recurrence relation which is solved easily by Discrete Invariant Imbedding Algorithm. Some numerical examples are given to validate the computational efficiency of the proposed numerical scheme for various values of the delay and perturbation parameters.

ASYMPTOTIC-NUMERICAL METHOD FOR SINGULARLY PERTURBED DIFFERENTIAL DIFFERENCE EQUATIONS OF MIXED-TYPE

  • SALAMA, A.A.;AL-AMERY, D.G.
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.5_6
    • /
    • pp.485-502
    • /
    • 2015
  • A computational method for solving singularly perturbed boundary value problem of differential equation with shift arguments of mixed type is presented. When shift arguments are sufficiently small (o(ε)), most of the existing method in the literature used Taylor's expansion to approximate the shift term. This procedure may lead to a bad approximation when the delay argument is of O(ε). The main idea for this work is to deal with constant shift arguments, which are independent of ε. In the present method, we construct the formally asymptotic solution of the problem using the method of composite expansion. The reduced problem is solved numerically by using operator compact implicit method, and the second problem is solved analytically. Error estimate is derived by using the maximum norm. Numerical examples are provided to support the theoretical results and to show the efficiency of the proposed method.