• Title/Summary/Keyword: singular points

Search Result 142, Processing Time 0.024 seconds

Fingerprint Image Enhancement Algorithm Based on Gabor Filter Using Multiresolution Image Information (다중해상도 영상정보를 이용한 가보필터 기반 지문영상 개선)

  • Oh Sang-Keun;Park Yeung-Sub;Park Chul-Hyun;Kim Bum-Su;Won Jong-Un;Park Kil-Houm
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11C
    • /
    • pp.1510-1517
    • /
    • 2004
  • A new fingerprint image enhancement algorithm using multiresolution information and Gabor filter is proposed in this paper. The proposed algorithm performs selection of the region in image according to inclusion of singular points and then performs enhancement using Gabor filtering of the region adjusted in its size. Gabor filter using representative direction in the same block is used in the region that the direction of ridge is not changed much, while Gabor filter using pixel based direction is used in the region that the direction of ridge is changed much. This method can reduce processing time for enhancement using Gabor filter and preserve the merit of Gabor filter.

A New Method of Fingerprint Image Processing Based on a Directional Filter Bank (방향성필터뱅크 기반의 새로운 지문영상의 처리 방법)

  • Oh, Sang-Keun;Lee, Joon-Jae;Park, Kil-Houm
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.8A
    • /
    • pp.796-804
    • /
    • 2002
  • This paper presents a new algorithm of fingerprint image analysis and processing using directional filter bank(DFB). The directional components of ridge is very important in pre-processing steps of fingerprint image processing such as image enhancement by directional filtering followed by estimationg the directional image of ridge patterns. The DFB analyzes input image into directional subband images and synthesizes them to the perfectly reconstructed image. In this paper, a new fingerprint processing algorithm using the DFB is proposed. The algorithm decomposes the fingerprint image into directional subband images and performs directional map generation, foreground segmentation, singular points extraction and image enhancement based on local directional energy estimate.

Crushing study for interlocked armor layers of unbonded flexible risers with a modified equivalent stiffness method

  • Ren, Shaofei;Liu, Wencheng;Song, Ying;Geng, Hang;Wu, Fangguang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.521-529
    • /
    • 2019
  • Interlocked armor layers of unbonded flexible risers may crush when risers are being launched. In order to predict the behavior of interlocked armor layers, they are usually simplified as rings with geometric and contact nonlinearity ignored in the open-literature. However, the equivalent thickness of the interlocked armor layer has not been addressed yet. In the present paper, a geometric coefficient ${\gamma}$ is introduced to the equivalent stiffness method, and a linear relationship between ${\gamma}$ and geometric parameters of interlocked armor layers is validated by analytical and finite element models. Radial stiffness and equivalent thickness of interlocked armor layers are compared with experiments and different equivalent methods, which show that the present method has a higher accuracy. Furthermore, hoop stress distribution of interlocked armor layer under crushing is predicted, which indicates the interlocked armor layer can be divided into two compression and two expansion zones by four symmetrically distributed singular points.

Deep neural networks trained by the adaptive momentum-based technique for stability simulation of organic solar cells

  • Xu, Peng;Qin, Xiao;Zhu, Honglei
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.259-272
    • /
    • 2022
  • The branch of electronics that uses an organic solar cell or conductive organic polymers in order to yield electricity from sunlight is called photovoltaic. Regarding this crucial issue, an artificial intelligence-based predictor is presented to investigate the vibrational behavior of the organic solar cell. In addition, the generalized differential quadrature method (GDQM) is utilized to extract the results. The validation examination is done to confirm the credibility of the results. Then, the deep neural network with fully connected layers (DNN-FCL) is trained by means of Adam optimization on the dataset whose members are the vibration response of the design-points. By determining the optimum values for the biases along with weights of DNN-FCL, one can predict the vibrational characteristics of any organic solar cell by knowing the properties defined as the inputs of the mentioned DNN. To assess the ability of the proposed artificial intelligence-based model in prediction of the vibrational response of the organic solar cell, the authors monitored the mean squared error in different steps of the training the DNN-FCL and they observed that the convergency of the results is excellent.

Strategy of Multistage Gamma Knife Radiosurgery for Large Lesions (큰 병변에 대한 다단계 감마나이프 방사선수술의 전략)

  • Hur, Beong Ik
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.801-809
    • /
    • 2019
  • Existing Gamma Knife Radiosurgery(GKRS) for large lesions is often conducted in stages with volume or dose partitions. Often in case of volume division the target used to be divided into sub-volumes which are irradiated under the determined prescription dose in multi-sessions separated by a day or two, 3~6 months. For the entire course of treatment, treatment informations of the previous stages needs to be reflected to subsequent sessions on the newly mounted stereotactic frame through coordinate transformation between sessions. However, it is practically difficult to implement the previous dose distributions with existing Gamma Knife system except in the same stereotactic space. The treatment area is expanding because it is possible to perform the multistage treatment using the latest Gamma Knife Platform(GKP). The purpose of this study is to introduce the image-coregistration based on the stereotactic spaces and the strategy of multistage GKRS such as the determination of prescription dose at each stage using new GKP. Usually in image-coregistration either surgically-embedded fiducials or internal anatomical landmarks are used to determine the transformation relationship. Author compared the accuracy of coordinate transformation between multi-sessions using four or six anatomical landmarks as an example using internal anatomical landmarks. Transformation matrix between two stereotactic spaces was determined using PseudoInverse or Singular Value Decomposition to minimize the discrepancy between measured and calculated coordinates. To evaluate the transformation accuracy, the difference between measured and transformed coordinates, i.e., ${\Delta}r$, was calculated using 10 landmarks. Four or six points among 10 landmarks were used to determine the coordinate transformation, and the rest were used to evaluate the approaching method. Each of the values of ${\Delta}r$ in two approaching methods ranged from 0.6 mm to 2.4 mm, from 0.17 mm to 0.57 mm. In addition, a method of determining the prescription dose to give the same effect as the treatment of the total lesion once in case of lesion splitting was suggested. The strategy of multistage treatment in the same stereotactic space is to design the treatment for the whole lesion first, and the whole treatment design shots are divided into shots of each stage treatment to construct shots of each stage and determine the appropriate prescription dose at each stage. In conclusion, author confirmed the accuracy of prescribing dose determination as a multistage treatment strategy and found that using as many internal landmarks as possible than using small landmarks to determine coordinate transformation between multi-sessions yielded better results. In the future, the proposed multistage treatment strategy will be a great contributor to the frameless fractionated treatment of several Gamma Knife Centers.

Representation of Dynamic Stiffness Matrix with Orthogonal Polynomials (직교다항식을 이용한 구조계의 축약된 동강성행렬 표현)

  • 양경택;최계식
    • Computational Structural Engineering
    • /
    • v.6 no.2
    • /
    • pp.95-102
    • /
    • 1993
  • A modeling method is described to provide a smaller structural dynamic model which can be used to compare finite element model of a structure with its experimental counterpart. A structural dynamic model is assumed to be represented by dynamic stiffness matrix. To validate a finite element model, it is often necessary to condense a large degrees of freedom (dofs) to a relatively small number of dofs. For these purpose, static reduction techniques are widely used. However, errors in these techniques are caused by neglecting frequency dependent terms in the functions relating slave dofs and master dofs. An alternative method is proposed in this paper in which the frequency dependent terms are considered by expressing the reduced dynamic stiffness matrix with orthogonal polynomials. The reduced model has finally a minimum set of dofs, such as sensors and excitation points and it is under the same condition as the physical system. It is proposed that the reduced model can be derived from finite element model. The procedure is applied to example structure and the results are discussed.

  • PDF

Core Point Detection Using Labeling Method in Fingerprint (레이블링 방법을 이용한 지문 영상의 기준점 검출)

  • 송영철;박철현;박길흠
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9C
    • /
    • pp.860-867
    • /
    • 2003
  • In this paper, an efficient core point detection method using orientation pattern labeling is proposed in fingerprint image. The core point, which is one of the singular points in fingerprint image, is used as the reference point in the most fingerprint recognizing system. Therefore, the detection of the core point is the most essential step of the fingerprint recognizing system, it can affect in the whole system performance. The proposed method could detect the position of the core point by applying the labeling method for the directional pattern which is come from the distribution of the ridges in fingerprint image and applying detailed algorithms for the decision of the core point's position. The simulation result of proposed method is better than the result of Poincare index method and the sine map method in executing time and detecting rate. Especially, the Poincare index method can't detect the core point in the detection of the arch type and the sine map method takes too much times for executing. But the proposed method can overcome these problems.

A Study on the Determination of Stress Intensity Factors in Orthotropic Plane Elastic Bodies (직교이방성 평면탄성체의 응력확대계수 결정에 관한 연구)

  • Jin, Chi Sub;Lee, Hong Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.19-27
    • /
    • 1993
  • Recent work in the mechanics of fracture points out the desirability of a knowledge of the elastic energy release rate, the crack extension force, and the character of the stress field surrounding a crack tip in analyzing the strength of cracked bodies. The objective of this work is to provide a discussion of the energy rates, stress fields and the like of various cases for anisotropic elastic bodies which might be of interest. Reinforced concrete, wood, laminates, and some special types of elastic bodies with controlled grain orientation are often orthotropic. In this paper, determination of the stress intensity factors(SIFs) of orthotropic plane elastic body using crack tip singular element and fine mesh in near the crack tip is performed. A numerical method in this paper was used by displacement correlation method. A numerical example problem of an orthotropic cantilevered single edge cracked elastic body subjected to shear loading was analyzed, and the results of this paper are in good agreement with those of the others.

  • PDF

Rotation-Scale-Translation-Intensity Invariant Algorithm for Fingerprint Identigfication (RSTI 불변 지문인식 알고리즘)

  • Kim, Hyun;Kim, Hak-Il
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.6
    • /
    • pp.88-100
    • /
    • 1998
  • In this paper, an algorithm for a real-time automatic fingerprint identification system is proposed. The fingerprint feature volume is extracted by considering distinct and local characteristics(such as intensity and image quality difference etc.) in fingerprint images, which makes the algorithm properly adaptive to various image acquisitionj methods. Also the matching technique is designed to be invariant on rotation, scaling and translation (RST) changes while being capable of real-time processing. And the classification of fingerprints is performed based on the ridge flow and the relations among singular points such as cores and deltas. The developed fingerprint identification algorithm has been applied to various sets of fingerprint images such as one from NIST(National Institute of Standards and Technology, USA), a pressed fingerprint database constructed according to Korean population distributions in sex, ages and jobs, and a set of rolled-than-scanned fingerprint images. The overall performance of the algorithm has been analyzed and evaluated to the false rejection ratio of 0.07% while holding the false acceptance ratio of 0%.

  • PDF

Analysis of Geometrical Relations of 2D Affine-Projection Images and Its 3D Shape Reconstruction (정사투영된 2차원 영상과 복원된 3차원 형상의 기하학적 관계 분석)

  • Koh, Sung-Shik;Zin, Thi Thi;Hama, Hiromitsu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.4 s.316
    • /
    • pp.1-7
    • /
    • 2007
  • In this paper, we analyze geometrical relations of 3D shape reconstruction from 2D images taken under anne projection. The purpose of this research is to contribute to more accurate 3-D reconstruction under noise distribution by analyzing geometrically the 2D to 3D relationship. In situation for no missing feature points (FPs) or no noise in 2D image plane, the accurate solution of 3D shape reconstruction is blown to be provided by Singular Yalue Decomposition (SVD) factorization. However, if several FPs not been observed because of object occlusion and image low resolution, and so on, there is no simple solution. Moreover, the 3D shape reconstructed from noise-distributed FPs is peturbed because of the influence of the noise. This paper focuses on analysis of geometrical properties which can interpret the missing FPs even though the noise is distributed on other FPs.