• Title/Summary/Keyword: single-phase grid-connected

Search Result 154, Processing Time 0.019 seconds

A Study on the Characteristics of PCS Using a Solar Cells Generation of Optimal Integrated (최적 일체형 태양광 발전용 전력변환장치 PCS 특성에 관한 연구)

  • Hwang, Lark Hoon
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.1003-1014
    • /
    • 2019
  • In this paper, we modeled the devices used easily in PV system circuits. Simulation tools use PSPICE to enable intuitive electrical circuit simulations. Simulations were also performed on the effects of temperature and spatial radiation that are easy to overlook when using solar cells using modelled libraries. In addition, for full operation of the photovoltaic system, a complete operation system for the DC-DC buck-boost converter and the MPPT(Maximum Power Point Tracking) control system was modeled and simulated to confirm good operation. In order to verify the operation of the simulation, we constructed an actual system with the same conditions in the simulation and experimented. As a result, we proposed a single-phase 3 kW grid-connected solar power converter.

Structure and Control of Smart Transformer with Single-Phase Three-Level H-Bridge Cascade Converter for Railway Traction System (Three-Level H-Bridge 컨버터를 이용한 철도차량용 지능형 변압기의 구조 및 제어)

  • Kim, Sungmin;Lee, Seung-Hwan;Kim, Myung-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.5
    • /
    • pp.617-628
    • /
    • 2016
  • This paper proposes the structure of a smart transformer to improve the performance of the 60Hz main power transformer for rolling stock. The proposed smart transformer is a kind of solid state transformer that consists of semiconductor switching devices and high frequency transformers. This smart transformer would have smaller size than the conventional 60Hz main transformer for rolling stock, making it possible to operate AC electrified track efficiently by power factor control. The proposed structure employs a cascade H-Bridge converter to interface with the high voltage AC single phase grid as the rectifier part. Each H-Bridge converter in the rectifier part is connected by a Dual-Active-Bridge (DAB) converter to generate an isolated low voltage DC output source of the system. Because the AC voltage in the train system is a kind of medium voltage, the number of the modules would be several tens. To control the entire smart transformer, the inner DC voltage of the modules, the AC input current, and the output DC voltage must be controlled instantaneously. In this paper, a control algorithm to operate the proposed structure is suggested and confirmed through computer simulation.

A Study on Characteristic of Hybrid PCS for Solar Power Generation Considering on a Residential Lithium Battery ESS. (가정용 리튬배터리 ESS를 고려한 태양광 발전 하이브리드 PCS 특성에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-kwon;Choi, Byung-Sang
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.1
    • /
    • pp.35-45
    • /
    • 2022
  • In this paper, we modeled the devices used easily in PV system circuits. In addition, for full operation of the photovoltaic system, a complete operation system for the DC-DC buck-boost converter and the MPPT control system was modeled and simulated to confirm good operation. we were constructed an actual system with the same conditions in the simulation and experimented. The purpose is to confirm the stable power supply through the load leveling by presenting the PCS considering ESS of photovoltaic power generation. we will do study to apply hybrid capacitors that have high energy density to the same size compared to the EDLC to DVR. As a result, we proposed a single-phase 3 kW grid-connected solar power converter.

Control and Analysis of an Integrated Bidirectional DC/AC and DC/DC Converters for Plug-In Hybrid Electric Vehicle Applications

  • Hegazy, Omar;Van Mierlo, Joeri;Lataire, Philippe
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.408-417
    • /
    • 2011
  • The plug-in hybrid electric vehicles (PHEVs) are specialized hybrid electric vehicles that have the potential to obtain enough energy for average daily commuting from batteries. The PHEV battery would be recharged from the power grid at home or at work and would thus allow for a reduction in the overall fuel consumption. This paper proposes an integrated power electronics interface for PHEVs, which consists of a novel Eight-Switch Inverter (ESI) and an interleaved DC/DC converter, in order to reduce the cost, the mass and the size of the power electronics unit (PEU) with high performance at any operating mode. In the proposed configuration, a novel Eight-Switch Inverter (ESI) is able to function as a bidirectional single-phase AC/DC battery charger/ vehicle to grid (V2G) and to transfer electrical energy between the DC-link (connected to the battery) and the electric traction system as DC/AC inverter. In addition, a bidirectional-interleaved DC/DC converter with dual-loop controller is proposed for interfacing the ESI to a low-voltage battery pack in order to minimize the ripple of the battery current and to improve the efficiency of the DC system with lower inductor size. To validate the performance of the proposed configuration, the indirect field-oriented control (IFOC) based on particle swarm optimization (PSO) is proposed to optimize the efficiency of the AC drive system in PHEVs. The maximum efficiency of the motor is obtained by the evaluation of optimal rotor flux at any operating point, where the PSO is applied to evaluate the optimal flux. Moreover, an improved AC/DC controller based Proportional-Resonant Control (PRC) is proposed in order to reduce the THD of the input current in charger/V2G modes. The proposed configuration is analyzed and its performance is validated using simulated results obtained in MATLAB/ SIMULINK. Furthermore, it is experimentally validated with results obtained from the prototypes that have been developed and built in the laboratory based on TMS320F2808 DSP.