• Title/Summary/Keyword: single-objective optimization

Search Result 218, Processing Time 0.033 seconds

Optimization of a 3-Class-based Dedicated Linear Storage System (3지역/ 지정위치 일차선형 저장시스템의 최적화)

  • Yang, Moonhee;Kim, Sun-uk
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.30 no.3
    • /
    • pp.190-196
    • /
    • 2004
  • In this paper, we address a layout design problem, PTL[3], for determining an optimal 3-class-based dedicated linear storage layout in a class of unit load storage systems. Our objective is to minimize the expected single command travel time. We analyze PTL[3] to derive a fundamental property that an optimal solution to PTL[3] is one of the partitions based on the PAI(product activity index)-nonincreasing ordering. Using the property and partial enumeration, we construct an efficient exact algorithm with O $(n\;{\lceil}\;log\;n\;{\rceil}\;)$ for solving PTL[3].

An Optimal Strategy for Private Life Annuity by Utilizing AEW (AEW를 활용한 개인종신연금의 최적화 전략)

  • Yang, Jae-Hwan;Yuh, Yoon-Kyung
    • IE interfaces
    • /
    • v.24 no.3
    • /
    • pp.173-186
    • /
    • 2011
  • In this paper, we evaluate life annuity plans for Korean pre-retired single and married couple participating Korea National Pension (KNP) and find optimal life annuity strategy by using utility-based measurements called AEW (Annuity Equivalent Wealth). Specifically, we extend a previous study to obtain a detailed optimal combination of annuitizing age and wealth in terms of percentage of net wealth at the time of retirement. A nonlinear optimization model is formulated with the objective of maximizing utility on consumption and bequest, and the dynamic programming (DP) technique is used to solve this problem. We find that there exist consistent patterns in optimal combinations of annuitizing age and wealth. Also, for all cases the optimal combination is significantly better than several other combinations. The results indicate that using the optimal approach can be beneficial to practitioners in insurance industry and prospective purchasers of life annuity. We conclude the paper with some discussions and suggestions.

Optimal Rotor Shape Design of Asymmetrical Multi-Layer IPM Motors to Improve Torque Performance Considering Irreversible Demagnetization

  • Mirazimi, M.S.;Kiyoumarsi, A.;Madani, Sayed M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1980-1990
    • /
    • 2017
  • A study on the multi-objective optimization of Interior Permanent-Magnet Synchronous Motors (IPMSMs) with 2, 3, 4 and 5 flux barriers per magnetic pole, based on Genetic Algorithm (GA) is presented by considering the aspect of irreversible demagnetization. Applying the 2004 Toyota Prius single-layer IPMSM as the reference machine, the asymmetrical two-, three-, four- and five-layer rotor models with the same amount of Permanent-Magnets (PMs) is presented to improve the torque characteristics, i.e., reducing the torque pulsation and increasing the average torque. A reduction of the torque pulsations is achieved by adopting different and asymmetrical flux barrier geometries in each magnetic pole of the rotor topology. The demagnetization performance in the PMs is considered as well as the motor performance; and analyzed by using finite element method (FEM) for verification of the optimal solutions.

Capacity Planning in a Closed Queueing Network

  • Hahm, Juho
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.16 no.2
    • /
    • pp.118-127
    • /
    • 1991
  • In this paper, criteria and algorithms for the optimal service rate in a closed queueing network have been established. The objective is to minimize total cost. It is shown that system throughput is increasing concave over the service rate of a node and cycle time is increasing convex over the set of service times with a single calss of cubsomers. This enables developing an algorithm using a steepest descent method when the cost function for service rate is convex. The efficiency of the algorithm rests on the fact that the steepest descent direction is readily obtained at each iteration from the MVA algorithm. Several numerical examples are presented. The major application of this research is optimization of facility capacity in a manufacturing system.

  • PDF

Hierarchical design resolution control scheme for the systematic generation of optimal candidate designs having various topological complexities (위상복잡도 조절을 위한 설계 해상도 계층적 제어 기법)

  • Seo, Jeong-Hun;Kim, Yoon-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1310-1315
    • /
    • 2003
  • In many practical engineering design problems, there are some design and manufacturing considerations that are difficult or infeasible to express in terms of an objective function or a constraint. In this situation, a set of optimal candidate designs having different topological complexities, not just a single optimal design, is preferred. To generate systematically such design candidates, we propose a hierarchical multiscale design resolution control scheme. In order to adjust its topological complexity by choosing a different starting resolution level in the hierarchical design space, we propose to employ a general M-band wavelet transform in transforming the original design space into the multiscale design space.

  • PDF

Flood Control Operation of Soyang and Choongju Reservoirs by the Min-max DP (Min-Max DP에 의한 소양 및 충주호의 홍수조절운영)

  • 오영민;이길성
    • Water for future
    • /
    • v.19 no.4
    • /
    • pp.339-346
    • /
    • 1986
  • A real-time single reservoir operation model using the Min-max Dynamic Programming for the flood control of Soyanggang Dam and Choongju Dam is developed. The objective function is to minimize the maximum release from each dam and the constraints are those from ther reservoir and channel characteristics. Control and utilization efficiencies are used to measure the performance of the reservoir operation method (ROM). In comparison with those of simulation models(such as the Rigid ROM, the Technical ROM and the Linear Decision Rule), the efficiencies of the optimization model are superior for all return periods.

  • PDF

Optimum Design of High-Speed, Short Journal Bearings by Artificial Life Algorithm (인공생명 알고리듬에 의한 고속, 소폭 저널베어링의 최적설계)

  • Lee, Yun-Hi;Yang, Bo-Suk
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.324-332
    • /
    • 1999
  • This paper presents the artificial life algorithm which is remarkable in the area of engineering for optimum design. As artificial life organisms have a sensing system, they can find the resource which they want to find and metabolize it. And the characteristics of artificial life are emergence and dynamical interacting with environment. In other words, the micro interaction with each other in the artificial life's group results in emergent colonization in the whole system. In this paper, therefore, artificial life algorithm by using above characteristics is employed into functions optimization. The effectiveness of this proposed algorithm is verified through the numerical test of single and multi objective functions. The numerical tests also show that the proposed algorithm is superior to genetic algorithm and immune algorithm for the Multi-peak function. And artificial life algorithm is also applied to optimum design of high-speed, short journal bearings and verified through the numerical test.

  • PDF

Optimization of Layout Design in an AS/RS for Maximizing its Throughput Rate

  • Yang, M.H.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.18 no.2
    • /
    • pp.109-121
    • /
    • 1992
  • In this paper, we address a layout design problem for determining a K-class-based dedicated storage layout in an automated storage retrieval system. K-class-based dedicated storage employs K zones in which lots from a class of products are stored randomly. Zones form a partition of storage locations. Our objective function is to minimize the expected single command travel time, which is expressed as a set function of space requirements for zones, average demand rates from classes, and one-way travel times from the pickup/deposit station to locations. We construct a heuristic algorithm based on analytical results and a local search method, the methodology deveolped can be used with easily-available data by warehouse planners to improve the throughput capacity of a conventional warehouse as well as an AS/RS.

  • PDF

A Study on Constraint Accumulation in Mathematical Programming Problems Using Envelope Functions (덮개 함수를 이용한 제한 조건 누적 최적화 기법에 관한 연구)

  • Lee, Byeong-Chae;Lee, Jeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.720-730
    • /
    • 2002
  • Automated design of large structures requires efficient and accurate optimization algorithms because of a large number of design variables and design constraints. The objective of this study is to examine the characteristics of the Kreisselmeier -Steinhauser envelope function and to investigate va tidily of accumulating constraint functions into a small number of constraint functions or even into a single constraint function. The commercial package DOT is adopted as a local optimizer. The optimum results using the envelope function are compared with those of the conventional method for a number of numerical examples and the differences between them are shown to be negligible.

An Adaptive Weighted Regression and Guided Filter Hybrid Method for Hyperspectral Pansharpening

  • Dong, Wenqian;Xiao, Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.327-346
    • /
    • 2019
  • The goal of hyperspectral pansharpening is to combine a hyperspectral image (HSI) with a panchromatic image (PANI) derived from the same scene to obtain a single fused image. In this paper, a new hyperspectral pansharpening approach using adaptive weighted regression and guided filter is proposed. First, the intensity information (INT) of the HSI is obtained by the adaptive weighted regression algorithm. Especially, the optimization formula is solved to obtain the closed solution to reduce the calculation amount. Then, the proposed method proposes a new way to obtain the sufficient spatial information from the PANI and INT by guided filtering. Finally, the fused HSI is obtained by adding the extracted spatial information to the interpolated HSI. Experimental results demonstrate that the proposed approach achieves better property in preserving the spectral information as well as enhancing the spatial detail compared with other excellent approaches in visual interpretation and objective fusion metrics.