• Title/Summary/Keyword: single-atom

Search Result 192, Processing Time 0.032 seconds

Toluene-4-sulfonic Acid 4-Allyl-2,6-dimethoxy-phenyl Ester

  • Choi, Kyu-Yong;Han, Byung-Hee;Kang, Sung-Kwon;Sung, Chang-Keun;Kang, Sang-Ook;Suh, Il-Hwan
    • Korean Journal of Crystallography
    • /
    • v.15 no.1
    • /
    • pp.1-4
    • /
    • 2004
  • The title compound, $C_{18}H_{20}O_5S$, crystallized in the centrosymmetric space group $P\={1}$ with one molecule in an asymmetric unit. The S atom in the sulfonate group retains the overall tetrahedral environment of the O and C atoms with an average S-O bond of 1.420(2) ${\AA}$ for double bond and of 1.598(2) ${\AA}$ for single bond and S-C length of 1.742(3) ${\AA}$. The torsion angle C(7)-S-O(3)-C(8) is 100.3(2)$^{\circ}$ and the dihedral angle of the two planar six-membered rings is 42.73(20)$^{\circ}$.

Preferential Peroxidase Activity of Prostaglandin Endoperoxide H Synthase for Lipid Peroxides

  • Yun, Seol-Ryung;Han, Su-Kyong;Song, In-Seok
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.94-94
    • /
    • 2001
  • Prostaglandin endoperoxide H synthase (PGHS) catalyzes the committed step in prostaglandins and thromboxane A$_2$-- oxygenation of arachidonic acid to the hydroperoxy endoperoxide PGG$_2$, followed by reduction PGG$_2$to the alcohol PGH$_2$. The two reactions by PGHS -- cyclooxygenase and peroxidase -- occur at distinct but structurally and functionally interconnected sites. The peroxidase reaction occurs at a heme-containing active site located near the protein surface. The cyclooxygenase reaction occurs in a hydrophobic channel in the core of the enzyme. Initially a peroxide reacts with the heme group, yielding Compound I and an alcohol derived from the oxidizing peroxide. Compound I next undergoes an intramolecular reduction by a single electron traveling from Tyr385 along the peptide chain to the proximal heme ligand, His388, and finally to the heme group. Following the binding of arachidonic acid, Tyr385 tyrosyl radical initiates the cyclooxygenase reaction by abstracting the 13-pro(5) hydrogen atom to give an arachidonyl radical, which sequentially reacts with two molecules of oxygen to yield PGG$_2$. In order to characterize PGHS peroxidase active site, we examined various lipid peroxides with purified recombinant ovine PGHS proteins and determined the rate constants. The results have shown that twenty-carbon unsaturated fatty acid hydroperoxides have similar efficiency in peroxidation by PGHS, irrespective of either the location of hydroperoxy group or the number of double bonds. It was also confirmed by the subsequent study with PGHS peroxidase active site mutants.

  • PDF

Physicochemical Characterization and NMR Assignments of Ginsenosides Rb1, Rb2, Rc, and Rd Isolated from Panax ginseng

  • Cho, Jin-Gyeong;Lee, Min-Kyung;Lee, Jae-Woong;Park, Hee-Jung;Lee, Dae-Young;Lee, Youn-Hyung;Yang, Deok-Chun;Baek, Nam-In
    • Journal of Ginseng Research
    • /
    • v.34 no.2
    • /
    • pp.113-121
    • /
    • 2010
  • The fresh ginseng roots were extracted with aqueous methanol, and the obtained extracts were partitioned using ethyl acetate, n-butanol, and water, successively. The repeated silica gel and octadecyl silica gel column chromatogaraphy for n-butanol fraction afforded four diol ginseng saponins, ginsenosides $Rb_1$, $Rb_2$, $R_c$, and Rd. The physicochemical, spectroscopic, and chromatographic characteristics of these ginsenosides were measured and compared with those reported in the literature. Some of the peak assignments in previously published $^1H$- and $^{13}C$-nuclear magnetic resonance (NMR) spectra were inaccurate. This study employed two-dimensional NMR experiments, including $^1H-^1H$ correlation spectroscopy, heteronuclear single quantum correlation, and heteronuclear multiple bond connectivity, to determine exact peak assignments.

Isolation, Physicochemical Properties and Toxicities of Territrem A' and B'

  • Ling, Kuo Huang;Peng, Fu Chuo;Chen, Bai Jiun;Wang, Yu;Lee, Gene Hsiang
    • Korean Journal of Pharmacognosy
    • /
    • v.17 no.2
    • /
    • pp.153-160
    • /
    • 1986
  • We have isolated two new metabolites of territrem, designated as territrem $A'\;(TRA';\;C_{28}H_{30}O_{10})$ and $B'\;(TRB';\; C_{29}H_{34}O_{10})$ from chloroform extract of rice culture of Aspergillus terreus 23-1, using the same isolation procedure as that for territrem A, B and C(TRA, TRB, TRC). The present isolation procedure gave about 5 mg of TRA' and 10 mg of TRB' from 4 kg of rice culture per batch. Analysis of the high resolution mass spectrum showed that the molecular composition of TRA' and TRB' are $C_{28}H_{30}O_{10}$ and $C_{29}H_{34}O_{10}$ respectively, Some results of physicochemical properties were presented in this paper. Single crystal X-ray diffractometry of TRB' showed that the three dimensional structure of TRB' has not changed significantly from that of $TRB\;(C_{29}H_{34}O_9)$, except for the insertion of one oxygen atom into TRB to make additional pyran in the E-ring. It is also suggested that the aromatic moiety of TRA' is similar to that of $TRA\;(C_{28}H_{30}O_9)$ and the rest non-aromatic portions resemble to those of TRB'. The tremorgenic activity, lethality and inhibitory effect on acetylcholine esterase of TRA' and TRB' are greatly reduced comparing to that of TRA and TRB.

  • PDF

Development of Sample Environment at High Temperature for the four Circle Diffractometer at HANARO: Structural Study of $LiTaO_3$ at Room and High Temperatures (하나로 4축 단결정 회절장치용 고온시료환경장치의 개발: $LiTaO_3$의 상온 및 고온 구조 연구)

  • 김신애;성기훈;이창희
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.140-144
    • /
    • 2002
  • The sample environment at high temperature for the four circle diffractometer at HANARO in Korea Atomic Energy Research Institute is developed. The performance test was carried out for a structurally known sample through the high temperature experiment with this equipment. In this study we found out that the developed sample environment is stable for a long time experiment at over 900 K. By the neutron diffraction from a single crystal of $LiTaO_3$(phase transition temperature about 900 K) at 298 and 913 K, the lithium atomic positions at both temperatures and disordered state of lithium atom at high temperature were confirmed. These are hardly possible to determine by the conventional X-ray diffraction method.

Substrate tempperature dependence of crystalline Y2O3 films grown by Ionized Cluster Beam Deposition

  • Cho, M.H.;Whangbo, S.W.;Seo, J.G.;Choi, S.C.;Cho, S.J.;Whang, C.N.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.87-89
    • /
    • 1998
  • The Y2O3 films on Si(111) was grown by ionized cluster beam depposition (ICBD) in ultrahigh-vacuum (UHV). The acceleration voltage and oxygen ppartial ppressure were fixed at 5 kV and 2$\times$10-5 Torr resppectively. The substrate tempperature was varied from 10$0^{\circ}C$ to $600^{\circ}C$ in order to find the deppendence of crystallinity of Y2O3 films on the substrate tempperature. The crystallinity of the films with the substrate tempperature studied using x-ray diffraction (XRD) and Rutherford backscattering sppectroscoppy (RES). Surface crystallinity and surface morpphology of the films were also investigated using the reflection high-energy electron diffraction (RHEED) and atomic force microscoppe (AFM) resppectively. The films grown at the substrate tempperature below 50$0^{\circ}C$showed the ppoly-crystalline structure of oxygen deficiency. On the contrary the single-crystalline structure was obtained at the substrate tempperature over 50$0^{\circ}C$ and the stochimetry was gradually matched as increasing the substrate tempperature. The surface morpphology showed the increase of the surface roughness as the substrate tempperature was increased upp to 50$0^{\circ}C$ The crystallinity of the film was not good and the minimum channeling yield $\chi$min was measured at 0.91 The stochiometric and high crystallinine film (surface $\chi$min=0.25) was obtained as the substrate tempperature increased upp to 60 $0^{\circ}C$ which indicate the tempperature was sufficient to migrate the depposited atom.

  • PDF

Electronic Structure and Magnetism of Ni Monolyer Embedded Between Rh Layers (Ni 단층이 삽입된 Rh 박막의 전자구조와 자성)

  • Kim Sun-Hee;Jang Y.R.;Lee J.I.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.1
    • /
    • pp.7-11
    • /
    • 2005
  • A single slab in which one Ni(001) atom layer embedded between two of four Rh layers is considered to examine the oscillation of magnetic moment in each layer. The all electron total-energy full-potential linearized augmented plane wave(FLAPW) method was used to calculate the spin densities, magnetic moments, density of states(DOS), and the number of electrons within each muffin-tin(MT) sphere. The magnetic moment of the center layer Ni(C) in the system of 4Rh/Ni/4Rh is calculated to be 0.34${\mu}_B$, which is 40% have magnetic moment at the interface layers by strong band hybridization with Ni(C) when Ni(001) monolayers is inserted, and the magnetic moment shows a damped oscillation as we go from center Ni(C) layer to the surface Rh(S). From the calculated density of states, it is found that the Fermi level shifts inside the energy band of the Ni(C) in affection of Rh(001).

Exploration of growth mechanism for layer controllable graphene on copper

  • Song, Woo-Seok;Kim, Yoo-Seok;Kim, Soo-Youn;Kim, Sung-Hwan;Jung, Dae-Sung;Jun, Woo-Sung;Jeon, Cheol-Ho;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.490-490
    • /
    • 2011
  • Graphene, hexagonal network of carbon atoms forming a one-atom thick planar sheet, has been emerged as a fascinating material for future nanoelectronics. Huge attention has been captured by its extraordinary electronic properties, such as bipolar conductance, half integer quantum Hall effect at room temperature, ballistic transport over ${\sim}0.4{\mu}m$ length and extremely high carrier mobility at room temperature. Several approaches have been developed to produce graphene, such as micromechanical cleavage of highly ordered pyrolytic graphite using adhesive tape, chemical reduction of exfoliated graphite oxide, epitaxial growth of graphene on SiC and single crystalline metal substrate, and chemical vapor deposition (CVD) synthesis. In particular, direct synthesis of graphene using metal catalytic substrate in CVD process provides a new way to large-scale production of graphene film for realization of graphene-based electronics. In this method, metal catalytic substrates including Ni and Cu have been used for CVD synthesis of graphene. There are two proposed mechanism of graphene synthesis: carbon diffusion and precipitation for graphene synthesized on Ni, and surface adsorption for graphene synthesized on Cu, namely, self-limiting growth mechanism, which can be divided by difference of carbon solubility of the metals. Here we present that large area, uniform, and layer controllable graphene synthesized on Cu catalytic substrate is achieved by acetylene-assisted CVD. The number of graphene layer can be simply controlled by adjusting acetylene injection time, verified by Raman spectroscopy. Structural features and full details of mechanism for the growth of layer controllable graphene on Cu were systematically explored by transmission electron microscopy, atomic force microscopy, and secondary ion mass spectroscopy.

  • PDF

Dynamics of a Globular Protein and Its Hydration Water Studied by Neutron Scattering and MD Simulations

  • Kim, Chan-Soo;Chu, Xiang-Qiang;Lagi, Marco;Chen, Sow-Hsin;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.21-21
    • /
    • 2011
  • A series of Quasi-Elastic Neutron Scattering (QENS) experiments helps us to understand the single-particle (hydrogen atom) dynamics of a globular protein and its hydration water and strong coupling between them. We also performed Molecular Dynamics (MD) simulations on a realistic model of the hydrated hen-egg Lysozyme powder having two proteins in the periodic box. We found the existence of a Fragile-to-Strong dynamic Crossover (FSC) phenomenon in hydration water around a protein occurring at TL=$225{\pm}5K$ by analyzing Intermediate Scattering Function (ISF). On lowering of the temperature toward FSC, the structure of hydration water makes a transition from predominantly the High Density Liquid (HDL) form, a more fluid state, to predominantly the Low Density Liquid (LDL) form, a less fluid state, derived from the existence of a liquid?liquid critical point at an elevated pressure. We showed experimentally and confirmed theoretically that this sudden switch in the mobility of the hydration water around a protein triggers the dynamic transition (so-called glass transition) of the protein, at a temperature TD=220 K. Mean Square Displacement (MSD) is the important factor to show that the FSC is the key to the strong coupling between a protein and its hydration water by suggesting TL${\fallingdotseq}$TD. MD simulations with TIP4P force field for water were performed to understand hydration level dependency of the FSC temperature. We added water molecules to increase hydration level of the protein hydration water, from 0.30, 0.45, 0.60 and 1.00 (1.00 is the bulk water). These confirm the existence of the FSC and the hydration level dependence of the FSC temperature: FSC temperature is decreased upon increasing hydration level. We compared the hydration water around Lysozyme, B-DNA and RNA. Similarity among those suggests that the FSC and this coupling be universal for globular proteins, biopolymers.

  • PDF

The Effect of Activated Nitrogen Species for Diffusion Rate during a Plasma Nitriding Process (플라즈마질화에서 발생기 질소와 질화 속도에 관한 연구)

  • Kim, Sang-Gweon;Kim, Sung-Wan;Brand, P.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.3
    • /
    • pp.150-155
    • /
    • 2010
  • Generally, plasma nitriding process has composed with a nitriding layer within glow discharge region occurred by energy exchange. The dissociations of nitrogen molecules are very difficult to make neutral atoms or ionic nitrogen species via glow discharge area. However, the captured electrons in which a double-folded screen with same potential cathode can stimulate and come out some single atoms or activated ionic species. It was showed an important thing that is called "hat is a dominant component in this nitriding process?" in plasma nitriding process and it can take an effective species for without compound layer. During a plasma nitriding process, it was able to estimate with analyzing and identification by optical emission spectroscopy (OES) study. And then we can make comparative studies on the nitrogen transfer with plasma nitriding and ATONA process using plasma diagnosis and metallurgical observation. From these observations, we can understand role of active species of nitrogen, like N, $N^+$, ${N_2}^+$, ${N_2}^*$ and $NH_x$-radical, in bulk plasma of each process. And the same time, during DC plasma nitriding and other processes, the species of FeN atom or any ionic nitride species were not detected by OES analyzing.