• Title/Summary/Keyword: single-atom

Search Result 193, Processing Time 0.03 seconds

Exploring Rational Design of Single-Atom Electrocatalysts for Efficient Electrochemical Reduction of CO2 to CO

  • Joonhee Ma;Jin Hyuk Cho;Kangwon Lee;Soo Young Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.2
    • /
    • pp.29-46
    • /
    • 2023
  • The electrochemical reduction of carbon dioxide (CO2) to value-added products is a remarkable approach for mitigating CO2 emissions caused by the excessive consumption of fossil fuels. However, achieving the electrocatalytic reduction of CO2 still faces some bottlenecks, including the large overpotential, undesirable selectivity, and slow electron transfer kinetics. Various electrocatalysts including metals, metals oxides, alloys, and single-atom catalysts have been widely researched to suppress HER performance, reduce overpotential and enhance the selectivity of CO2RR over the last few decades. Among them, single-atom catalysts (SACs) have attracted a great deal of interest because of their advantages over traditional electrocatalysts such as maximized atomic utilization, tunable coordination environments and unique electronic structures. Herein, we discuss the mechanisms involved in the electroreduction of CO2 to carbon monoxide (CO) and the fundamental concepts related to electrocatalysis. Then, we present an overview of recent advances in the design of high-performance noble and non-noble singleatom catalysts for the CO2 reduction reaction.

Enhanced Piezoelectric Degradation of Tetracycline Using Single-Atom Cu Anchored on t-BaTiO3

  • Shu Ye;Jing Cheng;Zeda Meng;Won-Chun Oh
    • Korean Journal of Materials Research
    • /
    • v.34 no.9
    • /
    • pp.422-431
    • /
    • 2024
  • Hydrothermal and ultrasonic processes were used in this study to synthesize a single-atom Cu anchored on t-BaTiO3. The resulting material effectively employs vibration energy for the piezoelectric (PE) catalytic degradation of pollutants. The phase and microstructure of the sample were analyzed using X-ray diffraction (XRD) and scanning electron microscopy (SEM), and it was found that the sample had a tetragonal perovskite structure with uniform grain size. The nanomaterial achieved a considerable increase in tetracycline degradation rate (approximately 95 % within 7 h) when subjected to mechanical vibration. In contrast, pure BaTiO3 demonstrated a degradation rate of 56.7 %. A significant number of piezo-induced negative charge carriers, electrons, can leak out to the Cu-doped BaTiO3 interface due to Cu's exceptional conductivity. As a result, a single-atom Cu catalyst can facilitate the separation of these electrons, resulting in synergistic catalysis. By demonstrating a viable approach for improving ultrasonic and PE materials this research highlights the benefits of combining ultrasonic technology and the PE effect.

Generation of Hydrogen Peroxide by Single-Atom Clusters Pd Anchored on t-BaTiO3 for Piezoelectric Degradation of Tetracycline

  • Xin Ni;Yuan Liang;Quanzi Pan;Hengjie Guo;Kai Chen;Bo Zhang;Shaocong Ni;Bin Sheng;Zeda Meng;Shouqing Liu;Won-Chun Oh
    • Korean Journal of Materials Research
    • /
    • v.33 no.11
    • /
    • pp.447-457
    • /
    • 2023
  • Single-atom Pd clusters anchored on t-BaTiO3 material was synthesized using hydrothermal and ultrasonic methods for the effective piezoelectric catalytic degradation of pollutants using vibration energy. XRD patterns of BaTiO3 loaded with monoatomic Pd were obtained before and after calcining, and showed typical cubic-phase BTO. TEM and HAADF-STEM images indicated single-atom Pd clusters were successfully introduced into the BaTiO3. The piezoelectric current density of the prepared Pd-BaTiO3 binary composite was significantly higher than that of the pristine BaTiO3. Under mechanical vibration, the nanomaterial exhibited a tetracycline decomposition rate of ~95 % within 7 h, which is much higher than the degradation rate of 56.7 % observed with pure BaTiO3. Many of the piezo-induced electrons escaped to the Pd-doped BaTiO3 interface because of Pd's excellent conductivity. Single-atom Pd clusters help promote the separation of the piezo-induced electrons, thereby achieving synergistic catalysis. This work demonstrates the feasibility of combining ultrasonic technology with the piezoelectric effect and provides a promising strategy for the development of ultrasonic and piezoelectric materials.

Atom Probe Tomography: A Characterization Method for Three-dimensional Elemental Mapping at the Atomic Scale

  • Choi, Pyuck-Pa;Povstugar, Ivan
    • Journal of Powder Materials
    • /
    • v.19 no.1
    • /
    • pp.67-71
    • /
    • 2012
  • The present paper gives an overview about the Atom Probe Tomography technique and its application to powder materials. The preparation of needle-shaped Atom Probe specimens from a single powder particle using focused-ion-beam milling is described. Selected experimental data on mechanically alloyed (and sintered) powder materials are presented, giving insight into the atomic-scale elemental redistribution occurring under powder metallurgical processing.

A Cavity-Assisted Atom Detector (CAAD) (캐비티-유도된 원자측정 장치)

  • Chough, Young-Tak;Hyuncheol Nha;Kyungwon An
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.124-125
    • /
    • 2000
  • We introduce a scheme with a maximized efficiency of detecting atoms passing through an optical standing-wave mode cavity. Consider a standing-wave optical cavity illuminated by a weak probe beam through one of its mirrors where the transmission through the other mirror is monitored by a photodetector. If an atom is put in the cavity, the atom-cavity coupling shifts the resonance frequency of the system via the so-called normal mode splitting, and thereby the transmission power will drop. In fact, this type of atom detection scheme has been used in recent single atom trap experiments In practice, however, the field in a standing-wave mode will have a geometrical structure having nodes and antinodes that when the atom traverses the cavity through one of the nodes, there will be no such effect of atom-field interaction. (omitted)

  • PDF

Molecular Orbital Treatment On The Heteroatom Model of Hyper-conjugation (Hetero-Atom Model의 超共節理論)

  • Park, Byung-Kak
    • Journal of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.1-4
    • /
    • 1970
  • The methyl group does not possess an unshared pair of electrons. But F.A. Matsen has introduced the concept of the methyl group as a Pseudo-heteroatom which contributes a pair of electrons to ${\pi}$ system. In this heteroatom model, A. Streitwieser et al have assumed that the electrons in a methyl group behave to their approximation as a single electron pair on a single atom. But the theoretical basis on the heteroatom model hyper-conjugation has not studied yet. In this paper, Linear combination of Bond orbital and group theory is used to investigate the theoretical basis for it.

  • PDF

Atomic Fountain towards a single atom trap (단원자 포획을 위한 원자분수)

  • H. S. Rawat;S. H. Kwon;Kim, J. B.;K. An
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.74-75
    • /
    • 2000
  • The past few decades have witnessed the development of very robust technique, known as magneto-optical trap(MOT), for cooling and trapping of neutral atoms using lasers and magnetic fields. This technique can easily produce cooled atoms to a temperature range of nano-kelvin $s^{(1)}$ . These laser cooled and trapped atoms have found applications in various fields, such as ultrahigh resolution spectroscopy, precision atomic clocks, very cold atomic collision physics, Bose-Einstein Condensation, the Atom laser, etc. Particularly, a few isolated atoms of very low temperature are needed in the cavity QED studies in the optical regime. One can obtain such atoms from a MOT using the atomic fountain technique. The widely used technique for atomic fountain is, first to cool and trap the neutral atoms in MOT. And then launch them in the vertical (1, 1, 1) direction with respect to cooling beams, using moving molasses technique. Recently, this technique combined with the cavity-QED has opened an active area of basic research. This way atoms can be strongly coupled to the optical radiation in the cavity and leads to various new effects. Trapping of single atom after separating it from MOT in the high Q-optical cavity is actively initiated presentl $y^{(2.3)}$. This will help to sharpen our understanding of atom-photon interaction at quantum level and may lead to the development of single-atom laser. Our efforts to develop an $^{85}$ Rb-atomic fountain is in progress. (omitted)

  • PDF

Atom-by-Atom Creation and Evaluation of Composite Nanomaterials at RT based on AFM

  • Morita, Seizo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.73-75
    • /
    • 2013
  • Atomic force microscopy (AFM) [1] can now not only image individual atoms but also construct atom letters using atom manipulation method [2]. Therefore, the AFM is the second generation atomic tool following the well-known scanning tunneling microscopy (STM). The AFM, however, has the advantages that it can image even insulating surfaces with atomic resolution and also measure the atomic force itself between the tip-apex outermost atom and the sample surface atom. Noting these advantages, we have been developing a novel bottom-up nanostructuring system, as shown in Fig. 1, based on the AFM. It can identify chemical species of individual atoms [3] and then manipulate selected atom species to the designed site one-by-one [2] to assemble complex nanostructures consisted of many atom species at room temperature (RT). In this invited talk, we will introduce our results toward atom-by-atom assembly of composite nanomaterials based on the AFM at RT. To identify chemical species, we developed the site-specific force spectroscopy at RT by compensating the thermal drift using the atom tracking. By converting the precise site-specific frequency shift curves, we obtained short-range force curves of selected Sn and Si atoms as shown in Fig. 2(a) and 2(b) [4]. Then using the atom-by-atom force spectroscopy at RT, we succeeded in chemical identification of intermixed three atom species in Pb/Sn/Si(111)-(${\surd}3$'${\surd}3$) surface as shown in Fig. 2(c) [3]. To create composite nanostructures, we found the lateral atom interchange phenomenon at RT, which enables us to exchange embedded heterogeneous atoms [2]. By combining this phenomenon with the modified vector scan, we constructed the atom letters "Sn" consisted of substitutional Sn adatoms embedded in Ge adatoms at RT as shown in Fig. 3(a)~(f) [2]. Besides, we found another kind of atom interchange phenomenon at RT that is the vertical atom interchange phenomenon, which directly interchanges the surface selected Sn atoms with the tip apex Si atoms [5]. This method is an advanced interchangeable single atom pen at RT. Then using this method, we created the atom letters "Si" consisted of substituted Si adatoms embedded in Sn adatoms at RT as shown in Fig. 4(a)~(f) [5]. In addition to the above results, we will introduce the simultaneous evaluation of the force and current at the atomic scale using the combined AFM/STM at RT.

  • PDF

Photoaddition Reactions of N-Methylthiophthalimide with $\alpha$-Silyl-n-electron Donors via Single Electron Transfer-Desilylation and Hydrogen Atom Abstraction Pathways

  • Yoon, Ung-Chan;Oh, Sun-Wha;Moon, Seong-Chul;Hyung, Tae-Gyung
    • Journal of Photoscience
    • /
    • v.9 no.1
    • /
    • pp.17-22
    • /
    • 2002
  • Studies have been conducted to explore photoaddition reactions of N-methylthiophthalimide with $\alpha$-silyl-n-electron donors Et$_2$NCH$_2$SiMe$_3$, n-PrSCH$_2$SiMe$_3$ and EtOCH$_2$SiMe$_3$. Photoaddition of $\alpha$-silyl amine Et$_2$NCH$_2$SiMe$_3$ to N-methylthiophthalimide occurs in $CH_3$CN and benzene to produce non-silicon containing adduct in which thiophthalimide thione carbon is bonded to $\alpha$-carbon of $\alpha$-silyl amine in place of the trimethylsilyl group. In contrast, photoaddition of EtOCH$_2$SiMe$_3$ to N-methylthiophthalimide generates two diastereomeric adducts in which thiophthalimide thione carbon is connected to $\alpha$-carbon of $\alpha$-silyl ether in place of u-hydrogen. Based on a consideration of the oxidation potentials of u-silyl-n-electron donors and the nature of photoadducts, mechanism for these photoadditions involving single electron transfer(SET) -desilylation and H atom abstraction pathways are proposed.

  • PDF