• Title/Summary/Keyword: single target

Search Result 1,423, Processing Time 0.022 seconds

A Basic Study on Spatial Recognition through Poet in Soswaewon Garden (시문을 통해 본 소쇄원의 공간인식에 관한 기초연구)

  • Lee, Won-Ho;Kim, Dong-Hyun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.33 no.3
    • /
    • pp.38-49
    • /
    • 2015
  • This study aims to contemplated spatial recognition in Soswaewon Garden through garden visitors poetry. It was content analysis in poetry and extract frequency from words based on relationship of author. The results were as follows. First, relationship of authors who wrote Soswaewon Garden poetry was formed in companionship. In the Yang, San-Bo(梁山甫), poetry was written by Song, Soon(宋純), Kim, Un-Geo(金彦据) and Kim, In-Hu(金麟厚) as the central figure. Especially Kim, In-Hu was playing an important role in Soswaewon Garden poetry. He was wrote many of poetry and keep friends with Yang, Ja-Jeong(梁子渟) too. In the Yang, Ja-Jung, relationship of previous generation was sustained. In addition, Ko, Gyeong-Myeong(高敬命) and Kim, Seong-Won and Jeong, Chul(鄭澈) is more closely related than others. Because blood relationship by marriage. In the Yang, Jin-Tae(梁晋泰), He formed a relationship with a celebrity and attend to international activity. Since then Yang, Jin-Tae periord, Yang, Gyeong-Ji(梁敬之) and Yang, Chae-Ji(梁采之) formed relationship of previous generation was sustained. And surrounding people was written poetry as hold a banquet. Second, plant and ornament is a popular object for writing poetry. Bamboo grove and Fine tree with a high frequency of plant element in poetry. Bamboo grove is a typical species of trees in Soswaewon Garden. It was enclosed the Soswaewon Garden. Fine tree was often used target of poetry as a single tree. Meanwhile, ornament of the wall has been used most frequently. Descendants wrote a poem to see it because Kim, In-Hu's poetry was left. This phenomenon is involves respect for the ancient sages with high frequency. In addition, behavior of viewing the landscape was mainly appeared. Third, spatial recognition of Soswaewon Garden can be divided into landscape cognition, behavior cognition and emotional cognition. In a aspect of landscape cognition, early Soswaewon Garden was recognized as a pavilion. That was used garden name to 'Soswaewon Garden' since Yang, Ja-Jung's period. That is to say, Soswaewon Garden expanded from pavilion area surrounded by trees into the whole appearance is equipped garden area. Behavior cognition was consisting drink and enjoys a landscape. In the Yang, San-Bo, authors enjoyed drinking and viewing a landscape besides walking, writing poetry, viewing the moon. But after Yang, San-Bo's period other than drinking and enjoy a landscape has appeared a low frequency. These results were changed from internal place to blood relationship into external place to companionship. In the Yang, San-Bo's emotional cognition was sorrow and yearning about leave to Soswaewon Garden with an idly atmosphere. Pleasant emotion was sustained all generation. And emotion of respect for the ancient sages was appeared since Yang, Cheon-un.

Retail Product Development and Brand Management Collaboration between Industry and University Student Teams (산업여대학학생단대지간적령수산품개발화품패관리협작(产业与大学学生团队之间的零售产品开发和品牌管理协作))

  • Carroll, Katherine Emma
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.3
    • /
    • pp.239-248
    • /
    • 2010
  • This paper describes a collaborative project between academia and industry which focused on improving the marketing and product development strategies for two private label apparel brands of a large regional department store chain in the southeastern United States. The goal of the project was to revitalize product lines of the two brands by incorporating student ideas for new solutions, thereby giving the students practical experience with a real-life industry situation. There were a number of key players involved in the project. A privately-owned department store chain based in the southeastern United States which was seeking an academic partner had recognized a need to update two existing private label brands. They targeted middle-aged consumers looking for casual, moderately priced merchandise. The company was seeking to change direction with both packaging and presentation, and possibly product design. The branding and product development divisions of the company contacted professors in an academic department of a large southeastern state university. Two of the professors agreed that the task would be a good fit for their classes - one was a junior-level Intermediate Brand Management class; the other was a senior-level Fashion Product Development class. The professors felt that by working collaboratively on the project, students would be exposed to a real world scenario, within the security of an academic learning environment. Collaboration within an interdisciplinary team has the advantage of providing experiences and resources beyond the capabilities of a single student and adds "brainpower" to problem-solving processes (Lowman 2000). This goal of improving the capabilities of students directed the instructors in each class to form interdisciplinary teams between the Branding and Product Development classes. In addition, many universities are employing industry partnerships in research and teaching, where collaboration within temporal (semester) and physical (classroom/lab) constraints help to increase students' knowledge and experience of a real-world situation. At the University of Tennessee, the Center of Industrial Services and UT-Knoxville's College of Engineering worked with a company to develop design improvements in its U.S. operations. In this study, Because should be lower case b with a private label retail brand, Wickett, Gaskill and Damhorst's (1999) revised Retail Apparel Product Development Model was used by the product development and brand management teams. This framework was chosen because it addresses apparel product development from the concept to the retail stage. Two classes were involved in this project: a junior level Brand Management class and a senior level Fashion Product Development class. Seven teams were formed which included four students from Brand Management and two students from Product Development. The classes were taught the same semester, but not at the same time. At the beginning of the semester, each class was introduced to the industry partner and given the problem. Half the teams were assigned to the men's brand and half to the women's brand. The teams were responsible for devising approaches to the problem, formulating a timeline for their work, staying in touch with industry representatives and making sure that each member of the team contributed in a positive way. The objective for the teams was to plan, develop, and present a product line using merchandising processes (following the Wickett, Gaskill and Damhorst model) and develop new branding strategies for the proposed lines. The teams performed trend, color, fabrication and target market research; developed sketches for a line; edited the sketches and presented their line plans; wrote specifications; fitted prototypes on fit models, and developed final production samples for presentation to industry. The branding students developed a SWOT analysis, a Brand Measurement report, a mind-map for the brands and a fully integrated Marketing Report which was presented alongside the ideas for the new lines. In future if the opportunity arises to work in this collaborative way with an existing company who wishes to look both at branding and product development strategies, classes will be scheduled at the same time so that students have more time to meet and discuss timelines and assigned tasks. As it was, student groups had to meet outside of each class time and this proved to be a challenging though not uncommon part of teamwork (Pfaff and Huddleston, 2003). Although the logistics of this exercise were time-consuming to set up and administer, professors felt that the benefits to students were multiple. The most important benefit, according to student feedback from both classes, was the opportunity to work with industry professionals, follow their process, and see the results of their work evaluated by the people who made the decisions at the company level. Faculty members were grateful to have a "real-world" case to work with in the classroom to provide focus. Creative ideas and strategies were traded as plans were made, extending and strengthening the departmental links be tween the branding and product development areas. By working not only with students coming from a different knowledge base, but also having to keep in contact with the industry partner and follow the framework and timeline of industry practice, student teams were challenged to produce excellent and innovative work under new circumstances. Working on the product development and branding for "real-life" brands that are struggling gave students an opportunity to see how closely their coursework ties in with the real-world and how creativity, collaboration and flexibility are necessary components of both the design and business aspects of company operations. Industry personnel were impressed by (a) the level and depth of knowledge and execution in the student projects, and (b) the creativity of new ideas for the brands.

DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA (한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발)

  • 박만배
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF