• Title/Summary/Keyword: single nucleotide polymorphism method

Search Result 166, Processing Time 0.022 seconds

SNP (Single Nucleotide Polymorphism) Detection Using Indicator-free DNA (비수식화 DNA를 이용한 SNP의 검출)

  • Choi, Yong-Sung;Park, Dae-Hee;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.224-226
    • /
    • 2003
  • In this paper, we succeeded SNP discrimination of DNA hybridization on microarray using new electrochemical system. Using the electrochemical method with a label-free DNA has Performed DNA chip microarray. This method is based on redox of an electrochemical ligand. We developed scanning system with high performance.

  • PDF

Fast Microchip Electrophoresis Using Field Strength Gradients for Single Nucleotide Polymorphism Identification of Cattle Breeds

  • Oh, Doo-Ri;Cheong, Il-Cheong;Lee, Hee-Gu;Eo, Seong-Kug;Kang, Seong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1902-1906
    • /
    • 2010
  • A microchip electrophoresis (ME) method was developed using a programmed field strength gradients (PFSG) for the single nucleotide polymorphism (SNP) based fast identification of cattle breeds. Four different Korean cattle (Hanwoo) and Holstein SNP markers amplified by allele-specific polymerase chain reaction were separated in a glass microchip filled with 0.5% poly(ethyleneoxide) ($M_r$ = 8 000 000) by PFSG as follows: 750 V/cm for 0 - 14 s, 166.7 V/cm for 14 - 31 s, 83.3 V/cm for 31 - 46 s, and 750 V/cm for 46 - 100 s. The cattle breeds were clearly distinguished within 45 s. The ME-PFSG method was 7 times and 5 times faster than the constant electric field ME method and the capillary electrophoresis- PFSG method, respectively, with a high resolving power ($R_s$ = 5.05 - 9.98). The proposed methodology could be a powerful tool for the fast and simultaneous determination of SNP markers for various cattle breeds with high accuracy.

Prediction of Chronic Hepatitis Susceptibility using Single Nucleotide Polymorphism Data and Support Vector Machine (Single Nucleotide Polymorphism(SNP) 데이타와 Support Vector Machine(SVM)을 이용한 만성 간염 감수성 예측)

  • Kim, Dong-Hoi;Uhmn, Saang-Yong;Hahm, Ki-Baik;Kim, Jin
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.7
    • /
    • pp.276-281
    • /
    • 2007
  • In this paper, we use Support Vector Machine to predict the susceptibility of chronic hepatitis from single nucleotide polymorphism data. Our data set consists of SNP data for 328 patients based on 28 SNPs and patients classes(chronic hepatitis, healthy). We use leave-one-out cross validation method for estimation of the accuracy. The experimental results show that SVM with SNP is capable of classifying the SNP data successfully for chronic hepatitis susceptibility with accuracy value of 67.1%. The accuracy of all SNPs with health related feature(sex, age) is improved more than 7%(accuracy 74.9%). This result shows that the accuracy of predicting susceptibility can be improved with health related features. With more SNPs and other health related features, SVM prediction of SNP data is a potential tool for chronic hepatitis susceptibility.

Detection of Single Nucleotide Polymorphism in Human IL-4 Receptor by PCR Amplification of Specific Alleles

  • Hwang, Sue Yun;Kim, Seung Hoon;Hwang, Sung Hee;Cho, Chul Soo;Kim, Ho Youn
    • Animal cells and systems
    • /
    • v.5 no.2
    • /
    • pp.153-156
    • /
    • 2001
  • A key aspect of genomic research in the “post-genome era”is to associate sequence variations with heritable phenotypes. The most common variations in the human genome are single nucleotide polymorphisms (SNPs) that occur approximately once in every 500 to 1,000 bases. Although analyzing the phenotypic outcome of these SNPs is crucial to facilitate large-scale association studies of genetic diseases, detection of SNPs from an extended number of human DNA samples is often difficult, labor-intensive and time-consuming. Recent development in SNP detection methods using DNA microarrays and mass spectrophotometry has allowed automated high throughput analyses, but such equipments are not accessible to many scientists. In this study, we demonstrate that a simple PCR-based method using primers with a mismatched base at the 3'-end provides a fast and easy tool to identify known SNPs from human genomic DNA in a regular molecular biology laboratory. Results from this PCR amplification of specific alleles (PASA) analysis efficiently and accurately typed the Q576R polymorphism of human IL4 receptor from the genomic DNAs of 29 Koreans, including 9 samples whose genotype could not be discerned by the conventiona1 PCR-SSCP (single strand conformation polymorphism) method. Given the increasing attention to disease-associated polymorphisms in genomic research, this alternative technique will be very useful to identify SNPs in large-scale population studies.

  • PDF

ALDH and CYP2E1 Single Nucleotide Polymorphism Distribution in Korean

  • Han, Dong-Hoon;Kim, Jeong-Hee
    • International Journal of Oral Biology
    • /
    • v.31 no.3
    • /
    • pp.107-112
    • /
    • 2006
  • Aldehyde dehydrogenase (ALDH) plays an important role in alcohol metabolism; ALDH is responsible for the oxidation of acetaldehyde generated during alcohol oxidation. ALDH is also known to oxidize various other endogenous and exogenous aldehydes. Cytochrome P-450 2E1 (CYP2E1), a liver microsomal enzyme, also metabolizes acetaldehyde and ethanol and can be induced by other inducers including acetone and ethanol. We examined single nucleotide polymorphisms (SNP) of ALDH and CYP2E1 genotypes in Korean. Restriction fragment length polymorphism (RFLP) method was used to determine ALDH and CYP2E1 SNP. Mutation in ALDH was 60% (heterozygote 46.7% and homozygote 13.3%) among 15 cases. CYP2E1 mutation was 52.7% (heterozygote 47.4% and homozygote 5.3%) among 19 cases.

Main SNP Identification of Hanwoo Carcass Weight with Multifactor Dimensionality Reduction(MDR) Method (MULTIFACTOR DIMENSIONALITY REDUCTION(MDR)을 이용한 한우 도체중에서의 주요 SNP 규명)

  • Lee, Jea-Young;Kim, Dong-Chul
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.1
    • /
    • pp.53-63
    • /
    • 2008
  • It is commonly believed that disease of human or economic traits of livestock are caused not by single gene acting alone, but by multiple genes interacting with one an-other. This issue is difficult due to the limitations of parametric statistical method like as logistic regression for detection of gene effects that are dependent solely on interactions with other genes and with environmental exposures. Multifactor dimensionality reduction (MDR) nonparametric statistical method, to improve the identification of single nucleotide polymorphism (SNP) associated with the Hanwoo(Korean cattle) carcass cold weight, is applied and compared with ANOVA results.

A Modified Mutation Detection Method for Large-scale Cloning of the Possible Single Nucleotide Polymorphism Sequences

  • Jiang, Ming-Chung;Jiang, Pao-Chu;Liao, Ching-Fong;Lee, Ching-Chiu
    • BMB Reports
    • /
    • v.38 no.2
    • /
    • pp.191-197
    • /
    • 2005
  • Although the human genome has been nearly completely sequenced, the functions and the roles of the vast majority of the genes, and the influences of single nucleotide polymorphisms (SNPs) in these genes are not entirely known. A modified mutation detection method was developed for large-scale cloning of the possible SNPs between tumor and normal cells for facilitating the identification of genetic factors that associated with cancer formation and progression. The method involves hybridization of restriction enzyme-cut chromosomal DNA, cleavage and modification of the sites of differences by enzymes, and differential cloning of sequence variations with a designed vector. Experimental validations of the presence and location of sequence variations in the isolated clones by PCR and DNA sequencing support the capability of this method in identifying sequence differences between tumor cells and normal cells.

Comparison of the Microsatellite and Single Nucleotide Polymorphism Methods for Discriminating among Hanwoo (Korean Native Cattle), Imported, and Crossbred Beef in Korea

  • Heo, Eun-Jeong;Ko, Eun-Kyung;Seo, Kun-Ho;Chon, Jung-Whan;Kim, Young-Jo;Park, Hyun-Jung;Wee, Sung-Hwan;Moon, Jin-San
    • Food Science of Animal Resources
    • /
    • v.34 no.6
    • /
    • pp.763-768
    • /
    • 2014
  • The identity of 45 Hanwo and 47 imported beef (non-Hanwoo) samples from USA and Australia were verified using the microsatellite (MS) marker and single nucleotide polymorphism (SNP) methods. Samples were collected from 19 supermarkets located in the city of Seoul and Gyeonggi province, South Korea, from 2009 to 2011. As a result, we obtained a 100% concordance rate between the MS and SNP methods for identifying Hanwoo and non-Hanwoo beef. The MS method presented a 95% higher individual discriminating value for Hanwoo (97.8%) than for non-Hanwoo (61.7%) beef. For further comparison of the MS and SNP methods, blood samples were collected and tested from 54 Hanwoo ${\times}$ Holstein crossbred cattle (first, second, and third generations). By using the SNP and MS methods, we correctly identified all of the first-generation crossbred cattle as non-Hanwoo; in addition, among the second and third generation crossbreds, the ratio identified as Hanwoo was 20% and 10%, respectively. The MS method used in our study provides more information, but requires sophisticated techniques during each experimental process. By contrast, the SNP method is simple and has a lower error rate. Our results suggest that the MS and SNP methods are useful for discriminating Hanwoo from non-Hanwoo breeds.

Clinical application of genome-wide single nucleotide polymorphism genotyping and karyomapping for preimplantation genetic testing of Charcot-Marie-Tooth disease

  • Kim, Min Jee;Park, Sun Ok;Hong, Ye Seul;Park, Eun A;Lee, Yu Bin;Choi, Byung-Ok;Lee, Kyung-Ah;Yu, Eun Jeong;Kang, Inn Soo
    • Journal of Genetic Medicine
    • /
    • v.19 no.1
    • /
    • pp.7-13
    • /
    • 2022
  • Purpose: Preimplantation genetic testing for monogenic disorders (PGT-M) has been successfully used to prevent couples with monogenic disorders from passing them on to their child. Charcot-Marie-Tooth Disease (CMT) is a genetic disorder characterized by progressive extremity muscle degeneration and loss of sensory function. For the first time in Korea, we report our experience of applying single nucleotide polymorphism genotyping and karyomapping for PGT-M of CMT disease. Materials and Methods: Prior to clinical PGT-M, preclinical tests were performed using genotypes of affected families to identify informative single-nucleotide polymorphisms associated with mutant alleles. We performed five cycles of in vitro fertilization PGT-M in four couples with CMT1A, CMT2A, and CMT2S in CHA Fertility Center, Seoul Station. Results: From July 2020 through August 2021, five cycles of PGT-M with karyomapping in four cases with CMT1 and CMT2 were analyzed retrospectively. A total of 17 blastocysts were biopsied and 15 embryos were successfully diagnosed (88.2%). Ten out of 15 embryos were diagnosed as unaffected (66.7%). Five cycles of PGT-M resulted in four transfer cycles, in which four embryos were transferred. Three clinical pregnancies were achieved (75%) and the prenatal diagnosis by amniocentesis for all three women confirmed PGT-M of karyomapping. One woman delivered a healthy baby uneventfully and two pregnancies are currently ongoing. Conclusion: This is the first report in Korea on the application of karyomapping in PGT-M for CMT patients. This study shows that karyomapping is an efficient, reliable and accurate diagnostic method for PGT-M in various types of CMT diseases.

A simple and rapid method for detection of single nucleotide variants using tailed primer and HRM analysis

  • Hyeonguk Baek;Inchul, Choi
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.209-214
    • /
    • 2023
  • Background: Single nucleotide polymorphisms (SNPs) are widely used genetic markers with applications in human disease diagnostics, animal breeding, and evolutionary studies, but existing genotyping methods can be labor-intensive and costly. The aim of this study is to develop a simple and rapid method for identification of a single nucleotide change. Methods: A modified Polymerase Chain Reaction Amplification of Multiple Specific Alleles (PAMSA) and high resolution melt (HRM) analysis was performed to discriminate a bovine polymorphism in the NCAPG gene (rs109570900, 1326T > G). Results: The inclusion of tails in the primers enabled allele discrimination based on PCR product lengths, detected through agarose gel electrophoresis, successfully determining various genotypes, albeit with some time and labor intensity due to the use of relatively costly high-resolution agarose gels. Additionally, high-resolution melt (HRM) analysis with tailed primers effectively distinguished the GG genotype from the TT genotype in bovine muscle cell lines, offering a reliable way to distinguish SNP polymorphisms without the need for time-consuming AS-PCR. Conclusions: Our experiments demonstrated the importance of incorporating unique mismatched bases in the allele-specific primers to prevent cross-amplification by fragmented primers. This efficient and cost-effective method, as presented here, enables genotyping laboratories to analyze SNPs using standard real-time PCR.