• Title/Summary/Keyword: single hydrogen bonding

Search Result 55, Processing Time 0.018 seconds

Phase Behavior of Poly(ethylene-co-vinyl alcohol)-Solvent System at High Pressure (고압에서 폴리(에틸렌/비닐 알코올) 공중합체-용매계의 상거동에 관한 연구)

  • Byun, Hun-Soo;Kim, Chong-Bae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.424-429
    • /
    • 1998
  • Cloud-point data at $230^{\circ}C$ and 1,800 bar are presented for two poly(ethylene-co-vinyl alcohol)(PEVA) copolymers[9.9mol% and 17.8mol% vinyl alcohol(VA)] in ethylene, propane, propylene, n-butane, 1-butene, dimethyl ether(DME), and chlorodifluromethane(CDFM). The static type experimental apparatus with a view cell has been used for the experiment at the high pressure and temperature. The pressure-temperature (P-T) loops of PEVA(9.9mol% VA) copolymer-DME mixtures are presented at copolymer concentrations of 1.4wt% to 20.0wt%. Also, we presented the phase behavior of PEVA(17.8mol% VA) copolymer-DME system at copolymer concentration of 1.9wt% to 6.8wt%. The cloud-point curves for the PEVA copolymers in dimethyl ether showed single phase above 480 bar as a result of the hydrogen bonding between the vinyl alcohol unit and dimethyl ether. The pressure-concentration(P-x) isotherm loops of PEVA(9.9mol% and 17.8mol% VA)-DME system are obtained. The cloud-point curves for PEVA(9.9mol% and 17.8 mol% VA) copolymers andthe ethylene, propane, propylene, n-butane, 1-butene, and CDFM all show negative slopes of phase behavior and are located at pressures below 1,800 bar. For PEVA copolymer-DME system(9.9mol% VA), cloud-point curves show positive slopes that decrease in pressures with decrease in temperature in the temperature range of $80^{\circ}C$ to $160^{\circ}C$.

  • PDF

Synthesis and Structural Characterization of Main Group 15 Organometallics R3M and R(Ph)2P(=N-Ar)(M = P, Sb, Bi; R = phenanthrenyl; Ar = 2,6-iPr2-C6H3)

  • Lee, Eun-Ji;Hong, Jin-Seok;Kim, Tae-Jeong;Kang, Young-Jin;Han, Eun-Me;Lee, Jae-Jung;Song, Ki-Hyung;Kim, Dong-Uk
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.12
    • /
    • pp.1946-1952
    • /
    • 2005
  • New group 15 organometallic compounds, M$(phenanthrenyl)_3$ (M = P (1), Sb (2), Bi (3)) have been prepared from the reactions of 9-phenanthrenyllithium with $MCl_3$. A reaction of 9-(diphenylphosphino)phenanthrene with 2,6-diisopropylphenyl azide led to the formation of (phenanthrenyl)${(Ph)}_2P$=N-(2,6-$^iPr_2C_6H_3$) (4). The crystal structures of 2 and 4 have been determined by single-crystal X-ray diffractions, both of which crystallize with two independent molecules in the asymmetric unit. Compound 2 shows a trigonal pyramidal geometry around the Sb atom with three phenanthrenyl groups being located in a screw-like fashion with an approximately $C_3$ symmetry. A significant amount of CH- -$\pi$ interaction exists between two independent molecules of 4. The phosphorus center possesses a distorted tetrahedral environment with P-N bond lengths of 1.557(3)$\AA$ (P(1) N) and 1.532(3)$\AA$ (P(2)-N), respectively, which are short enough to support a double bond character. One of the most intriguing structural features of 4 is an unusually diminished bond angle of C-N-P, attributable to the hydrogen bonding of N(1)-H(5A) [ca. 2.49$\AA$ between two adjacent molecules in crystal packing. The compounds 1-3 show purple emission both in solution and as films at room temperature with emission maxima ($\lambda_{max}$) at 349, 366, and 386 nm, respectively, attributable to the ligand centered $\pi$ $\rightarrow$ $\pi^\ast$ transition in phenanthrene contributed by the lone pair electrons of the Gp 15 elements. Yet the nature of luminescence observed with 4 differs in that it originates from $\pi$ (diisopropylbenzene)-$\pi^\ast$ (phenanthrene) transitions with the $\rho\pi$contribution from the nitrogen atom. The emission maximum of 4 is red-shifted ranging 350-450 nm due to the internal charge transfer from the phenanthrenyl ring to the N-arylamine group as deduced from the ab initio calculations.

Studies of Annealing Effect on the Properties of the Rigid Polyurethane (열처리에 따른 경질 폴리우레탄의 물성 변화 연구)

  • Kang S. J.;Jung H. C.;Kim W. N.;Lee Y. B.;Choe K. H.;Hong S. H.;Kim S. B.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.18-24
    • /
    • 1998
  • Polyurethane (PU) synthesized from 4,4'-diphenylmethane diisocyanate having high functionality (f=2.9) and polyester polyol have been investigated by differential scanning calorimeter (DSC), dynamic mechanical thermal analyzer (DMTA), and Fourier transform infrared spectroscope (FT-IR). From the DSC measurement of polyurethane, a single transition temperature ($T_g$) was observed. This result indicates that polyurethanes synthesized in this work have homogeneous network structure due to high functionality of diisocyanate. It was also found that the $T_g$ of polyurethane was increased as hard segment content was increased. The results from DMTA measurement are consistent with DSC results. In order to investigate the effect of thermal annealing on the $T_g$ of polyurethane, the samples were annealed at various annealing conditions. $T_gs$ of polyurethanes were found to increased with annealing temperature. From swelling experiment and FT-IR studies, it was found that the $T_g$ was increased as crosslinking density of polyurethane was increased.

  • PDF

Miscibility and Specific Intermolecular Interaction Strength of PBI/PI Blends Depending on Polyimide Structure(II) - Blend Systems with PIs Synthesized by DSDA - (폴리이미드 구조변화에 의한 방향족 PBI/PI 블렌드의 상용성 및 상호작용의 세기(II) - DSDA로 합성한 PI들과의 블랜드들 -)

  • Ahn, Tae-Kwang
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.207-213
    • /
    • 1998
  • On the basis of the previous study[1], miscibility were investigated and intermolecular interaction strength for the miscibility were relatively compared for the blends poly{2,2-(m-phenylene)-5,5'-bibenzimidazole}(PBI) with two aromatic polyimides (PIs) synthesized by another dianhydride. Aromatic PAAs were prepared by the reaction of condensation of two diamines, 4,4'-methylene dianiline(4,4'-MDA) and 4,4'-oxydianiline(4,4'-ODA) with 3,3',4,4'-diphenylsulfone tetracarboxylic dianhydride(DSDA) using DMAc, and then converted into PIs after curing. PBI/PAA blends were prepared by solution blending. Cast films or precipitated powders of the PBI/PAA blends were cared at a high temperature to transform into PBI/PIs blends. Miscibility and specific intermolecular interaction for miscibility in the blends were investigated, and compared with previous polyimide structures of PBI/PIs blends [1]. Two blends, PBI/DSDA+4,4'-MDA(Blend-V) and PBI/DSDA+4,4'-ODA(Blend-VI), were found miscible : the evidences were optically clear films, synergistic single composition dependent $T_g{\prime}s$, and frequency shifts of N-H stretching band as much as $39{\sim}40cm^{-1}$, and of C=O stretching band near 1730 and $1780cm^{-1}$, 5~6 and $3{\sim}4cm^{-1}$, respectively. The specific intermolecular interactions existing between PBI and PIs were relatively analyzed with the area(A) formed between the $T_g{\prime}s$ of the measured and that of the calculated by the Fox equation at all compositions, the ${\kappa}$ values in Gordon-Taylor equation obtained from the measured $T_g{\prime}s$, and differences of the frequency shifts in the functional N-H and carbonyl stretching band. From the results, the area(A) and the ${\kappa}$ values for Blend-V and VI were smaller than those for Blend-III and IV used in previous study[1]. Differences of the frequency shifts in the functional groups(N-H and C=O) also showed similar tendency. Thus, specific intermolecular interaction strength in terms of hydrogen bonding of PBI/PI blends is dependent upon chemical structures of PIs, that is, PIs it seems that $SO_2$ group in dianhydride(DSDA) has weaker hydrogen bond strength than those of C=O in BTDA. In other words, it implies that the former occupied bulk space than the latter due to the sterric effect.

  • PDF

Effect of Cardanol Content on the Antibacterial Films Derived from Alginate-PVA Blended Matrix (알지네이트-폴리비닐알콜 블랜드 항균 필름 제조를 위한 카다놀 함량의 영향)

  • Ahn, Hee Ju;Kang, Kyung Soo;Song, Yun Ha;Lee, Da Hae;Kim, Mun Ho;Lee, Jae Kyoung;Woo, Hee Chul
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.24-31
    • /
    • 2022
  • Petroleum-based plastics are used for various purposes and pose a significant threat to the earth's environment and ecosystem. Many efforts have been taken globally in different areas to find alternatives. As part of these efforts, this study manufactured alginate-based polyvinyl alcohol (PVA) blended films by casting from an aqueous solution prepared by mixing 10 wt% petroleum-based PVA with biodegradable, marine biomass-derived alginate. Glutaraldehyde was used as a cross-linking agent, and cardanol, an alkyl phenol-based bio-oil extracted from cashew nut shell, was added in the range of 0.1 to 2.0 wt% to grant antibacterial activity to the films. FTIR and TGA were performed to characterize the manufactured blended films, and the tensile strength, degree of swelling, and antibacterial activity were measured. Results obtained from the FTIR, TGA, and tensile strength test showed that alginate, the main component, was well distributed in the PVA by forming a matrix phase. The brittleness of alginate, a known weakness as a single component, and the low thermal durability of PVA were improved by cross-linking and hydrogen bonding of the functional groups between alginate and PVA. Addition of cardanol to the alginate-based PVA blend significantly improved the antibacterial activity against S. aureus and E. coli. The antibacterial performance was excellent with a death rate of 98% or higher for S. aureus and about 70% for E. coli at a contact time of 60 minutes. The optimal antibacterial activity of the alginate-PVA blended films was found with a cardanol content range between 0.1 to 0.5 wt%. These results show that cardanol-containing alginate-PVA blended films are suitable for use as various antibacterial materials, including as food packaging.