• Title/Summary/Keyword: single electrode specific capacitance

Search Result 12, Processing Time 0.018 seconds

Effect of Chemically Treated / Untreated Carbon Cloth: Potential Use as Electrode Materials in the Capacitive Deionization Process of Desalination of Aqueous Salt Solution

  • Thamilselvan, Annadurai;Nesaraj, A Samson;Noel, Michael;James, E.J.
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.139-145
    • /
    • 2015
  • Capacitive deionization (CDI) process is a novel approach for desalination of an aqueous salt solution. In the present study, an activated carbon cloth (ACC) is proposed as effective electrode material. Initially the carbon cloth was activated in 1 M and 8 M HNO3 for 9 hours at room temperature. The untreated and chemically activated carbon cloth (ACC) electrode materials were subjected to BET surface area measurements in order to get information about their specific surface area, average pore size, total pore volume and micropore area. The above materials were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) also. The electrochemical studies for the electrodes were done using cyclic voltammetry (CV) in 0.1 M Na2SO4 medium. From the studies, it was found that resistivity of the activated carbon cloth electrodes (treated in 1 M and 8 M HNO3) was decreased significantly by the chemical oxidation in nitric acid at room temperature and its capacitance was found to be 90 F/g (1 M HNO3) and 154 F/g (8 M HNO3) respectively in 0.1 M Na2SO4 solution. The capacitive deionization behavior of a single cell CDI with activated carbon cloth electrodes was also studied and reported in this work.

Electrochemical Performances of Acid-Treated and Pyrolyzed Cokes According to Acid Treatment Time (산처리 시간별 산화 코크스와 열분해 코크스의 전기화학적 거동)

  • Kim, Ick-Jun;Yang, Sunhye;Jeon, Min-Je;Moon, Seong-In;Kim, Hyun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.19 no.4
    • /
    • pp.407-412
    • /
    • 2008
  • As an activation procedure, in this study, the oxidation treatment of needle cokes with a dilute nitric acid and sodium chlorate $(NaClO_3)$, combined with heat treatment, was attempted. The structures of acid-treated and pyrolyzed coke were examined with XRD, FESEM, elemental analyzer, BET, and Raman spectroscopy. The behavior of double layer capacitance was investigated with the analysis of charge and discharge. The structure of needle coke treated with acid was revealed to a single phase of (001) diffraction peak after 24 h. On the other hand, thecoke oxidized by heat treatment was reduced to a graphite structure of (002) at $300^{\circ}C$. The distorted graphene layer structure, derived from the process of oxidation and reduction of the inter-layer, makes the pores by the electric field activation at the first charge, and generates the double layer capacitance from the second charge. The cell using pyrolyzed coke with 24 h acid treatment and $300^{\circ}C$ heat treatment exhibited the maximum capacitance per weight and volume of 33 F/g and 30 F/mL at the two-electrode system in the potential range of 0~2.5 V.