• Title/Summary/Keyword: single cell protein

Search Result 481, Processing Time 0.035 seconds

The effects of early exercise in traumatic brain-injured rats with changes in motor ability, brain tissue, and biomarkers

  • Kim, Chung Kwon;Park, Jee Soo;Kim, Eunji;Oh, Min-Kyun;Lee, Yong-Taek;Yoon, Kyung Jae;Joo, Kyeung Min;Lee, Kyunghoon;Park, Young Sook
    • BMB Reports
    • /
    • v.55 no.10
    • /
    • pp.512-517
    • /
    • 2022
  • Traumatic brain injury (TBI) is brain damage which is caused by the impact of external mechanical forces. TBI can lead to the temporary or permanent impairment of physical and cognitive abilities, resulting in abnormal behavior. We recently observed that a single session of early exercise in animals with TBI improved their behavioral performance in the absence of other cognitive abnormalities. In the present study, we investigated the therapeutic effects of continuous exercise during the early stages of TBI in rats. We found that continuous low-intensity exercise in early-stage improves the locomotion recovery in the TBI of animal models; however, it does not significantly enhance short-term memory capabilities. Moreover, continuous early exercise not only reduces the protein expression of cerebral damage-related markers, such as Glial Fibrillary Acid Protein (GFAP), Neuron-Specific Enolase (NSE), S100β, Protein Gene Products 9.5 (PGP9.5), and Heat Shock Protein 70 (HSP70), but it also decreases the expression of apoptosis-related protein BAX and cleaved caspase 3. Furthermore, exercise training in animals with TBI decreases the microglia activation and the expression of inflammatory cytokines in the serum, such as CCL20, IL-13, IL-1α, and IL-1β. These findings thus demonstrate that early exercise therapy for TBI may be an effective strategy in improving physiological function, and that serum protein levels are useful biomarkers for the predicition of the effectiveness of early exercise therapy.

The primary cilium as a multiple cellular signaling scaffold in development and disease

  • Ko, Hyuk-Wan
    • BMB Reports
    • /
    • v.45 no.8
    • /
    • pp.427-432
    • /
    • 2012
  • Primary cilia, single hair-like appendage on the surface of the most mammalian cells, were once considered to be vestigial cellular organelles for a past century because of their tiny structure and unknown function. Although they lack ancestral motility function of cilia or flagella, they share common ground with multiciliated motile cilia and flagella on internal structure such as microtubule based nine outer doublets nucleated from the base of mother centrioles called basal body. Making cilia, ciliogenesis, in cells depends on the cell cycle stage due to reuse of centrioles for cell division forming mitotic spindle pole (M phase) and assembling cilia from basal body (starting G1 phase and maintaining most of interphase). Ciliary assembly required two conflicting processes such as assembly and disassembly and balance between these two processes determines the length of cilia. Both process required highly conserved transport system to supply needed substance to grow tip of cilia and bring ciliary turnover product back to the base of cilia using motor protein, kinesin and dynein, and transport protein complex, IFT particles. Disruption of ciliary structure or function causes multiple human disorder called ciliopathies affecting disease of diverse ciliated tissues ranging from eye, kidney, respiratory tract and brain. Recent explosion of research on the primary cilia and their involvement on animal development and disease attracts scientific interest on how extensively the function of cilia related to specific cell physiology and signaling pathway. In this review, I introduce general features of primary cilia and recent progress in understanding of the ciliary length control and signaling pathways transduced through primary cilia in vertebrates.

Genetic parameters for daily milk somatic cell score and relationships with yield traits of primiparous Holstein cattle in Iran

  • Kheirabadi, Khabat;Razmkabir, Mohammad
    • Journal of Animal Science and Technology
    • /
    • v.58 no.10
    • /
    • pp.38.1-38.6
    • /
    • 2016
  • Background: Despite the importance of relationships between somatic cell score (SCS) and currently selected traits (milk, fat and protein yield) of Holstein cows, there was a lack of comprehensive literature for it in Iran. Therefore we tried to examine heritabilities and relationships between these traits using a fixed-regression animal model and Bayesian inference. The data set consisted of 1,078,966 test-day observations from 146,765 primiparous daughters of 1930 sires, with calvings from 2002 to 2013. Results: Marginal posterior means of heritability estimates for SCS ($0.03{\pm}0.002$) were distinctly lower than those for milk ($0.204{\pm}0.006$), fat ($0.096{\pm}0.004$) and protein ($0.147{\pm}0.005$) yields. In the case of phenotypic correlations, the relationships between production and SCS were near zero at the beginning of lactation but become increasingly negative as days in milk increased. Although all environmental correlations between production and SCS were negative ($-0.177{\pm}0.007$, $-0.165{\pm}0.008$ and $-0.152{\pm}0.007$ between SCS and milk, fat, and protein yield, respectively), slightly antagonistic genetic correlations were found; with posterior mean of relationships ranging from $0.01{\pm}0.039$ to $0.11{\pm}0.036$. This genetic opposition was distinctly higher for protein than for fat. Conclusion: Although small, the positive genetic correlations suggest some genetic antagonism between desired increased milk production and reduced SCS (i.e., single-trait selection for increased milk production will also increase SCS).

Studies on the Phosphate Metabolism in Chlorella, with Special Reference to Polyphosphate (Chlorella의 인산대사에 관한 연구)

  • 이영록
    • Korean Journal of Microbiology
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 1964
  • Yung Nok Lee (Dept. of Biology, Korea University) : Studies on the phosphate metabolism in Chlorella, with special reference to polyphosphate. Kor. J. Microbiol., Vol.2, No.1, p1-11 (1964). 1. Uniformly $^{32}P$-labeled Chlorella cells which were irradiated with Cobalt-60 gamma-rays of about 70, 000 $\gamma$ dose, were further grown in a standard "cold" medium ("hot".rarw."cold"), and some portions of the algae were taken out at the begining of, and at intervals during the culture, and subjected to analyze the contents of $^{32}P$- and total P in various fractions of the cell materials. Results obtained were compared with those of nonirradiated normal cells. 2. Amounts of phosphate in various fractions of the nonirradiated normal Chlorella cells were measured using uniformly $^{32}P$--labeled cells. Analysis of the $^{32}P$--labeled algal cells showed that the highest value in P-content was the fraction of RNA followed by those of lipid, polyphosphate "C" polyphosphate "B", DNA, nucleotidic labile phosphate compounds, polyphosphate "A" and protein. It was observed that content of total polyphosphates in a single Chlorella cell was almost equal to RNA-P content in the cell, and the amount of RNA-P was almost equal to ten times of DNA-P content. 3. When the $^{32}P$--labeled algae which were irradiated with gamma-rays were grown in a normal "cold" medium, phosphate contents in the fraction of DNA, nucleotidic labile phosphate compounds and protein decreased markedly, while the contents of phosphate in the fractions of polyphosphate "C" and potyphosphate "B" increased in comparison with those of unirradiated normal cells. So, it was considered that the pretreatment of above mentioned dose of gamma-ray inhibited DNA and protein synthesis from polyphosphate in Chlorella cells. 4. Proceeding the culture of $^{32}P$--labeled Chlorella in a "cold" standard medium, whose synthetic activity of DNA and protein from polyphosphate was disturded by gamma-ray irradiation, the amounts of $^{32}P$-in the fraction of polyphosphate "C" increased, in contrast with those of polyphosphate "B" fraction. According to these experimental results, it was inferred that polyphosphate "B" could transform into polyphosphate "C" in normal growing Chlorella cells.sults, it was inferred that polyphosphate "B" could transform into polyphosphate "C" in normal growing Chlorella cells.ing Chlorella cells.

  • PDF

Analysis of Cellular Components of Starch-Utilizing Yeast Sporobolomyces holsaticus (전분이용성 효모 Sporobolomyces holsaticus의 균체성분 분석에 대하여)

  • Park, Wan-Soo;Koo, Young-Jo;Shin, Dong-Hwa;Suh, Kee-Bong
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.170-176
    • /
    • 1983
  • Starchy single cell protein produced by a starch-utilizing yeast, Sporobolomyces holsaticus FRI Y-5 was analyzed for its composition such as intracellular protein, amino acids, fatty acids, minerals, vitamins and pigments. It was shown that it contained 33.08% of total carbohydrate, 45.63% of crude protein, 20.01% of crude lipid, 3.24% of ash and 4.46% of pigment. Whole cell extracted by cold and hot NaOH method contained 40.89% of soluble protein and the estimated nucleic acid content from crude and soluble protein contents was about 7.6%. The sulphur-containing amino acids, threonine, isoleucine and valine were analyzed to be the limiting amino acids in the starchy SCP, and the protein score was calculated as 89.4. It was shown from its fatty acid analysis that it contained $6.5%\;of\;C_{16:0}$, $2.4%\;of\;C_{18:0}$, $81.9%\;of\;C_{18:1}$, $3.2%\;of\;C_{18:2}$, and $6.0%\;of\;C_{18:3}$. Also it was observed that it contained, per 100 g of dry cell, 365.33mg of Mg and 282.75mg of K more than Fe and Ca. The content of Vit. $B_2$ was 3.7mg per 100 g of dry cell, but niacin was not detected under this experimental condition. The UV-visible scanning result of pigment extract showed that the yeast contained carotenoid and unknown pigments.

  • PDF

Proteomic Analysis of Circadian Clock Mutant Mice

  • Lee Joon-Woo;Kim Han-Gyu;Bae Kiho
    • Biomedical Science Letters
    • /
    • v.11 no.4
    • /
    • pp.493-501
    • /
    • 2005
  • Circadian rhythms, time on a scale of about 24 hours, are present in a number of organisms including animals, plants, and bacteria. The control of the biochemical, physiological and behavioral processes is regulated by endogenous clocks in the suprachiasmatic nucleus (SCN). At the core of this timing mechanism is molecular machinery that are present both in the brain and in the peripheral tissues throughout the body, and even in a single cultured cell. In this study, we performed two-dimensional gel electrophoresis to figure out any correlation between protein expression patterns and the requirement of two canonical clock proteins, either mPER1 or mPER2, by comparing global protein expression profiles in livers from wildtype or mPer1/mPer2 double mutant mice. We could identify several differentially expressed protein candidates with respect to time and genotypes. Further analysis of these candidate proteins in detail in vivo will lead us to the better understanding of how circadian clock functions in mammals.

  • PDF

A Proteomic Approach to Study msDNA Function in Escherichia coli

  • Jeong, Mi-Ae;Lim, Dongbin
    • Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.200-204
    • /
    • 2004
  • Retron is a prokaryotic genetic element that produces multicopy single-stranded DNA covalently linked to RNA (msDNA) by a reverse transcriptase. It was found that cells producing a large amount of msDNA, rather than those that did not, showed a higher rate of mutation. In order to understand the molecular mechanism connecting msDNA production to the high mutation rate the protein patterns were compared by two dimensional gel electrophoresis. Ten proteins were found to be differentially expressed at levels more than three fold greater in cells with than without msDNA, nine of which were identified by MALDI TOF MS. Eight of the nine identified proteins were repressed in msDNA-producing cells and, surprisingly, most were proteins functioning in the dissimilation of various carbon sources. One protein was induced four fold greater in the msDNA producing cells and was identified as a 30S ribosomal protein S2 involved in the regulation of translation. The molecular mechanism underlying the elevated mutation in msDNA-producing cell still remains elusive.

Production of Yeast Biomass from Waste Brine of Kimchi Factory (김치공장의 배추 절임폐수를 이용한 효모 균체 생산)

  • Choi, Min-Ho;Park, Yun-Hee
    • Applied Biological Chemistry
    • /
    • v.41 no.5
    • /
    • pp.331-336
    • /
    • 1998
  • The possibility of using waste brine from kimchi factory as a substrate for the production of the single cell protein was investigated. The growth of Pichia guilliermondii A9 isolated from waste brine was not inhibited by the NaCl up to 10% (w/v). BOD of the waste brine was reduced to one tenth after 24 hours of yeast culture. The addition of ammonium salt, phosphate, and micronutrients to the waste brine did not enhance the growth of P. guilliermondii A9. However, when the brine was enriched with juice from waste cabbage, the final cell mass increased proportionally with the amount of added organic material, suggesting a practical application for the treatment of two different types of waste produced during kimchi manufacturing.

  • PDF

Screening of Bacterial Surface Display Anchoring Motif Using Tetrameric β-galactosidase in Bacillus subtilis Spore (Tetrameric β를 이용한 고초균 포자에서의 미생물 표면 발현 모체 선별)

  • Kim, June-Hyung;Pan, Jae-Gu;Kim, Byung-Gee
    • KSBB Journal
    • /
    • v.26 no.3
    • /
    • pp.199-205
    • /
    • 2011
  • Using tetrameric ${\beta}$-galactosidase as a model protein, anchoring motives were screened in Bacillus subtilis spore display system. Eleven spore coat proteins were selected considering their expression levels and the location in the spore coat layer. After chromosomal single-copy homologous integration in the amyE site of Bacillus subtilis chromosome, cotE and cotG were chosen as possible spore surface anchoring motives with their higher whole cell ${\beta}$-galactosidase activity. PAGE and Wester blot of extracted fraction of outer layer of purified spore, which express CotE-LacZ or CotG-LacZ fusion verified the existence of exact size of fusion protein and its location in outer coat layer of purified spore. ${\beta}$-galactosidase activity of spore with CotE-LacZ or CotG-LacZ fusion reached its highest value around 16~20 h of culture time in terms of whole cell and purified spore. After intensive spore purification with lysozyme treatment and renografin treatment, spore of BJH135, which expresses CotE-LacZ, retained only 1~2% of its whole cell ${\beta}$-galactosidase activity. Whereas spore of BJH136, which has cotG-lacZ cassette in the chromosome, retained 10~15% of its whole cell ${\beta}$-galactosidase activity, proving minor perturbation of CotG-LacZ, when incorporated in the spore coat layer of Bacillus subtilis compared to CotE-LacZ. Usage of Bacillus subtilis WB700, of which 7 proteases are knocked-out and thereby resulting in 99.7% decrease in protease activity of the host, did not prevent the proteolytic degradation of spore surface expressed CotG-LacZ fusion protein.

Formation of DNA-protein Cross-links Mediated by C1'-oxidized Abasic Lesion in Mouse Embryonic Fibroblast Cell-free Extracts

  • Sung, Jung-Suk;Park, In-Kook
    • Animal cells and systems
    • /
    • v.9 no.2
    • /
    • pp.79-85
    • /
    • 2005
  • Oxidized abasic residues arise as a major class of DNA damage by a variety of agents involving free radical attack and oxidation of deoxyribose sugar components. 2-deoxyribonolactone (dL) is a C1'-oxidized abasic lesion implicated in DNA strand scission, mutagenesis, and covalent DNA-protein cross-link (DPC). We show here that mammalian cell-free extract give rise to stable DPC formation that is specifically mediated by dL residue. When a duplex DNA containing dL at the site-specific position was incubated with cell-free extracts of Po ${\beta}-proficient$ and -deficient mouse embryonic fibroblast cells, the formation of major dL-mediated DPC was dependent on the presence of DNA polymerase (Pol) ${\beta}$. Formation of dL-specific DPC was also observed with histones and FEN1 nuclease, although the reactivity in forming dL-mediated DPC was significantly higher with Pol ${\beta}$ than with histones or FEN1. DNA repair assay with a defined DPC revealed that the dL lesion once cross-linked with Pol ${\beta}$ was resistant to nucleotide excision repair activity of cell-free extract. Analysis of nucleotide excision repair utilizing a model DNA substrate containing a (6-4) photoproduct suggested that excision process for DPC was inhibited because of DNA single-strand incision at 5' of the lesion. Consequently DPC mediated by dL lesion may not be readily repaired by DNA excision repair pathway but instead function as unusual DNA damage causing a prolonged DNA strand break and trapping of the major base excision repair enzyme.