• Title/Summary/Keyword: simultaneous removal

Search Result 299, Processing Time 0.034 seconds

Study on Simultaneous Removal of Nitrogen and Phosphorus Using Zeocarbon

  • Hong, Ji-Sook;Suh, Jeong-Kwon
    • Carbon letters
    • /
    • v.11 no.2
    • /
    • pp.112-116
    • /
    • 2010
  • The objective of this study was to evaluate the possibility of simultaneous removal of ammonium, nitrate and phosphorus in water using the zeocarbon. In this study, the surface of zeocarbon was modified by acid because of difficulty in application of water treatment. After surface modification, the strength was enhanced about 62% higher than that of original one. The removal efficiency of ammonium and nitrate using the modified zeocarbon was about 47% and 32%, respectively and were higher than that of zeocarbon. In batch type experiment on the simultaneous removal of ammonium, nitrate and phosphorus, the presence of phosphorus did not have influence on nitrogen removal efficiency. Concomitantly, removal efficiency of phosphorus was obtained was about 35%. This indicates that the surface modified zeocarbon can be applied for simultaneous removal of nitrogen and phosphorus. Consequently, our results could be used as basic data to design of one-stage nitrogen/phosphorus simultaneous removal system.

Development of Pilot-Scale Scrubber for Simultaneous Removal of $SO_2/NO$

  • Jung, Seung-Ho;Jeong, Gwi-Taek;Lee, Gwang-Yeon;Park, Don-Hee;Cha, Jin-Myeong
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.468-474
    • /
    • 2005
  • SOx and NOx are known major precursors of acid rain and thus the abatement of their emissions is a major target in air pollution control. To obtain basic data on the removal process of simultaneous $SO_2/NO$, the optimal reaction condition and the composition of reaction solution for simultaneous removal of $SO_2/NO$, ware investigated using a bubble column reactor. Pilot scrubber was consisted of scrubber, filter and control box. Dust removal rate was 83, 92, and 97% with catalyst flux of 0.5, 0.8, 1.5 L/min, respectively Average dust removal efficiency with a kind of nozzle was about 94 and 90% in STS FF6.5 (5/8in.) and 14 of P.P W(1.0in.), respectively Dust and $SO_2$ were removed more than 98-96% regardless of reactor number. In the case of NO gas, removal yield of 83.3% was achieved after 48 hours in 1 stage, also removal yield of 95.7% was reached in 2 stages. In tile case of application of STS (5/8 in.) and P.P (1.0 in.) as used fill packing, removal efficiency was reached higher than 98% without related to of kind of fill packing.

  • PDF

Performance characteristics of simultaneous removal equipment for paint particulate matter and VOCs generated from a spraying paint booth (입자상물질과 VOCs 동시제거 실증장치에서 자동차 페인트 부스 발생 paint aerosol과 VOCs의 동시제거 성능 특성)

  • Lee, Jae-Rang;Hasolli, Naim;Jeon, Seong-Min;Lee, Kang-San;Kim, Kwang-Deuk;Park, Young-Ok
    • Particle and aerosol research
    • /
    • v.12 no.4
    • /
    • pp.161-168
    • /
    • 2016
  • The purpose of this study is to determine the performance characteristics of the paint particulate and volatile organic compounds(VOCs) simultaneous removal from the spraying paint booth in the laboratory and real site by sticky paint particulate and VOCs simultaneous removal demonstration unit. The sticky paint particulate and VOCs simultaneous removal unit is composed of the horizontal type pleated filter modules and the zig-zag type granular activated carbon packing modules. The test conditions at the laboratory are $50.15g/m^3$ of average paint aerosol concentration and 300 ppm of VOCs concentration which were same as the working conditions of spraying paint booth in the real site. But, the demonstration conditions at the real site are varied according to the working condition of spraying paint booth for the kind of passenger car bodies. The test results at the laboratory obtained that 99% of total particulate collection efficiency at 0.62 m/min of filtration velocity and 84% at 1.77 m/min of filtration velocity. The VOCs removal efficiencies are 97% at $3500hr^{-1}$ of gas hour space velocity and 59% at $10,000hr^{-1}$ of gas hour space velocity. In the real site test, the average removal efficiency of PM10 was measured to be 99.65%, the average removal efficiency of PM2.5 was 99.38%, the average removal efficiency of PM1 was 98.52%, and the average removal efficiency of VOCs was 89%.

Adsorption-DAF Hybrid Process for the Simultaneous Removal of Algae and Organic Compounds (조류와 유기화합물의 동시제거를 위한 흡착 - DAF 복합공정)

  • Lee, Jae-Wook;Kwak, Dong-Heui;Choi, Seung-Phil;Jung, Heung-Joe
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.208-214
    • /
    • 2004
  • Dissolved air flotation (DAF) is an effective solid/liquid separation process for low density floc particles such as algal, color-alum and clay-alum flocs produced from low turbidity water. The removal of taste and odor-causing organics (2-mthylisoboneol and geosmin) originating from algae in drinking water is a local and worldwide concern. Although DAF has been effectively applied for the removal of suspended solid, its application for the treatment of dissolved organic carbon is very limited. In this study, a new hybrid system consisting of adsorption and DAF processes was introduced for the simultaneous removal of algae and taste and odor-causing organics. Powdered activated carbon (PAC) was used as an adsorbent. In this proposed system, the major concern of eliminating the spent PAC from the system was also addressed. It was found that zeta potential of algae and PAC was increased with coagulant dosage, and the removal efficiency in DAF was also enhanced up to 90~95% under the given experimental conditions. Based on this study, the hybrid process was found to be a promising technology for the simultaneous removal of algae and dissolved organic pollutants.

Simultaneous Removal of NOx/SOx by Catalyst-loaded Cordierite Porous Filter (촉매 담지 코디어라이트 다공성 필터의 NOx/SOx 동시제거에 대한 연구)

  • Lee, Shi-Hee;Chung, Koo-Chun;Kim, Jee-Woong;Shin, Min-Chul;Lee, Hee-Soo
    • Analytical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.256-262
    • /
    • 2002
  • After porous filters were manufactured using cordierite powder whose mean paricle size was 200${\mu}m$, they were loaded with catalysts such as $V_2O_5$, CuO and $LaCoO_3$ by vacuum impregnation method. And the NOx/SOx simultaneous removal efficiency was measured by passing NO and $SO_2$ through catalyst-loaded ceramic filters. The cordierite porous filters had the apparent porosity of 61.6%, the compressive strength of 12.3 MPa and the pressure drop of 147 pa at the face velocity of 5 cm/sec. According to the analysis of NO/$SO_2$ simultaneous removal efficiency, perovskite $LaCoO_3$ catalyst was the most efficient for the simultaneous NO and $SO_2$ removal. The $LaCoO_3$ catalyst-loaded filter could remove more than 90% for NO and more than 80% for $SO_2$.

ZanF를 이용한 카드뮴(Cd)과 6가 크롬(Cr(VI))의 동시제거

  • 이승학;이광헌;명동일;박준범
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.143-146
    • /
    • 2004
  • Natural zeolites have exhibited high sorption capacity for inorganic cations including heavy metals and ammonium. Moreover, they were proven to be effective for environmental applications such as permeable barriers for controlling the spread of cation-contaminated groundwater. However zeolites have little or no affinity for anionic species like chromium, as they possess a net negative structural charge. To achieve the simultaneous sorption for anionic contaminants, surfactant-modified zeolite (SMZ) has been employed as the possible sorbents. Current study focuses on simultaneous removal of heavy metals having different ionic form in aqueous solution, cadmium (C $d^{2+}$) and chromium (Cr $O_{4}$$^{2-}$), using newly developed materials, ZanF. ZanF, a potential alternative to SMZ, was derived from zeolite modified by Fe(II) chloride followed by reduction with sodium borohydride. Batch experiments were performed to estimate the removal efficiency of ZanF at different conditions. Under different pH ranging from 2 to 6, removal efficiency was investigated. And C $d^{2+}$ removal efficiency was estimated by varying background concentration of Cr $O_{4}$$^{2-}$, and vice versa. With the test results, ZanF was expected to be a possible reactive materials alternative to SMZ in permeable reactive barriers (PRBs) for treating the contaminated groundwater with cationic and anionic heavy metals.als.

  • PDF

A Basic Study on the Simultaneous Removal of Ammonium and Nitrate using Zeocarbon (제오카본을 이용한 암모니아성 질소와 질산성 질소 동시 제거에 관한 기초 연구)

  • Kim, Seo-A;Hong, Ji-Sook;Suh, Jeong-Kwon;Kang, Ho;Lee, Jung-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.109-114
    • /
    • 2005
  • The objective of this study is to investigate the possibility for water treatment, and to evaluate the efficiency of simultaneous removal of ammonium and nitrate by the surface modified zeocarbon. The surface modification was done by acid treatment using HCl. As a result of modification, strength of the modified zeocarbon was enhanced about 62% higher than that of in original one. This indicates that the modified zeocarbon was suitable for the application of water treatment. In the removal experiments of ammonium and nitrate, the removal efficiency showed about two times higher in the modified zeocarbon and the dependences of pH and temperature were found to be minimized. This indicates that the modified zeocarbon was effective for simultaneous removal of ammonium and nitrate from aqueous solution. Consequently, our results could be used as basic data to design of one-stage ammonium/nitrate simultaneous removal system.

Simultaneous Removal of Cd &Cr(VI) by Fe-loaded zeolite in Column System (컬럼실험을 통한 Fe-loaded zeolite의 Cd& Cr(VI) 동시제거 반응성 평가)

  • Lee A-Ra;Lee Seung-Hak;Park Jun-Beom
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.151-154
    • /
    • 2005
  • Laboratory column experiments for simultaneous removal of Cd and Cr(VI) are conducted using newly developed material, referred to as Fe-loaded zeolite, which has both reduction ability of iron and ion exchange ability of zeolite. Breakthrough curves were obtained from each column experiment, and described with advection-dispersion equation. Apparent parameters including $K_{app}\;and\;D_{app}$ were newly introduced for effectively describing the Cr(VI) breakthrough curve. $K_{app}$ decreased with increasing initial contaminant concentration and with decreasing flow rates. Whereas, $D_{app}$ were not significantly affected by initial contaminant concentration or flow rate.

  • PDF

Effect of Aeration Intensity on Simultaneous Nitrification and Denitrification Efficiency in the Submerged Moving Media Biofilm Process (완전침지형 회전매체 생물막 공정에서 포기강도 조절이 동시 질산화/탈질 효율에 미치는 영향)

  • Kim, Jun-myoung;Lee, Sang-min;Lim, Kyeong-ho;Kim, Il-gyou;Kang, Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.273-279
    • /
    • 2008
  • Space separation method that use independent reactor for nitrification and other reactor for denitrification has been commonly used for biological nitrogen removal process like $A^2O$ process. However, this method needs large space and complicate pipelines and time separation method such as SBR process have a difficulty in continuous treatment. Thus biological nitrogen removal process which is capable of continuous treatment, easy opeation and space saving is urgently required. In this research, submerged moving media was used for a biofilm process and suspended sludge was used for biological nitrogen removal at the same time. In particular DO environment by controlling air flow rate was investigated for simultaneous nitrification/denitrification. Total nitrogen removal in aeration rate more than $67L/min{\cdot}m^3$ showed 51~53% and rose to 65%, 70% and 78% in $50L/min{\cdot}m^3$, $58L/min{\cdot}m^3$ and $25L/min{\cdot}m^3$ respectively. Total phosphorus removal was very low about 10~20% more than $67L/min{\cdot}m^3$ aeration rates. But total phosphorus removal roses when reduces aeration rate by $58L/min{\cdot}m^3$ low and it showed total phosphorus removal of 72% in aeration rate $25L/min{\cdot}m^3$.

Simultaneous Removal of Heavy Metals and Diesel-fuel from a Soil Column by Surfactant Foam Flushing (계면활성제 거품(Foam)을 이용한 토양칼럼 내 유류 및 중금속 동시 제거 연구)

  • Heo, Jung-Hyun;Jeong, Seung-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.5
    • /
    • pp.90-96
    • /
    • 2011
  • Simultaneous removal of heavy metals (Cd, Pb) and diesel-fuel from a soil column was evaluated by respectively flushing with sodium dodecyl sulfate (SDS) solution, mixture of SDS and sodium iodide (SDS + NaI), and surfactant foam (SDS + NaI foam). First, this study evaluated these flushing methods to the heavy metals only-contaminated soil for removal of heavy metals from the heavy-metal only contaminated soil column. After 7 pore volume flushing of the soil column, Cd removal efficiencies from the soil were 40% by SDS solution, 50% by SDS + NaI mixture, and 60% by surfactant foam. The flushing results implied that anionic surfactant and ligand can be efficiently applied to extraction of Cd from the heavy metal contaminated soil. Furthermore, surfactant foam flushing showed an increased flushing efficiency with enhancing the contact between surfactant solution and soil. However, Pb removal efficiency by these flushing methods did not show any difference unlike those of Cd. Second, this study eventually evaluated flushing methods for simultaneous removal of heavy metals and diesel-fuel from the soil column with 7 pore volume flushing. Diesel-fuel removal efficiencies were 50% by SDS + NaI flushing and 90% by SDS + NaI foam flushing. Cd removal efficiency by the foam flushing reached to 80% which was higher than the result of the previous heavy metals onlycontaminated soil experiment. This result implied that diesel-fuel could act as a metal-solvent while it contacted to heavy metals present in the soil. This study clearly showed that surfactant foam flushing simultaneously removed heavy metals and diesel fuel from the soil column.