• Title/Summary/Keyword: simultaneous jack-up system

Search Result 2, Processing Time 0.009 seconds

Performance Analysis of Simultaneous Liftable 3D Concrete Printing Based on Statistical Analysis Algorithm (통계분석 알고리즘 프로그램을 활용한 동시 인상 3D 콘크리트 프린팅의 성능 분석)

  • Yoon-Chul Kim;Sung-Jo Kim;Bongsik Kim;Yongsoo Ji;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.6
    • /
    • pp.407-414
    • /
    • 2023
  • In this study, an automated jack-up system, applicable to various fields, was employed for 3D concrete printing and developed as a simultaneous liftable 3D concrete printing system. This developed printing system enables safe and precise jack-up by monitoring the measured jack-up distance using Pearson correlation coefficient analysis and a hydraulic system with interquartile range analysis in real-time during 3D concrete printing operations. It is possible to secure the quality of 3D concrete printing structures, which is essential for expanding the application of 3D concrete printing to construct larger structures. Specimens were printed using both conventional 3D concrete printing and simultaneous liftable 3D concrete printing to evaluate the system performance. The printed specimens were investigated using a 3D scanner. The layer-wise diameter and angle of intersection of the scanned specimens were measured, and an analysis was performed to verify the advantages of the simultaneous liftable 3D concrete printing.

Performance Analysis of Smart Automatic Jack-Up System Using the Pairwise Comparison Matrix Analysis Method (쌍대비교행렬 분석 기법을 적용한 스마트 자동 인상 시스템의 성능 분석)

  • Kim, Sung-Jo;Ji, Yongsoo;Kim, Bongsik;Han, Tong-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.1
    • /
    • pp.9-14
    • /
    • 2022
  • In this study, a smart jack-up system was developed to prevent safety accidents by performing risk analysis when a structure is lifted for maintenance. A quantitative risk analysis program that can analyze the risk using the pairwise comparison matrix analysis method was developed. The risk was analyzed in real-time for the lifting structure by connecting the program with an automatic jack-up system. Displacements were measured by the IR sensor among the components of the automatic jack-up system, and the displacements were provided to the quantitative risk analysis program. To confirm the performance of the smart automatic jack-up system, experiments were conducted on bridge and risk analysis was performed when a superstructure was lifted. A linear variable differential transformer (LVDT) was also installed on the bridge to verify the performance of the smart automatic jack-up system. The maximum displacements were measured using the devices, and the declinations were compared. The performance of the simultaneous operation of the jack-up device was verified by the analysis of variance (ANOVA).