• Title/Summary/Keyword: simultaneous distillation and extraction (SDE)

Search Result 139, Processing Time 0.025 seconds

Volatile Flavor Components in Green Tea Blended with Parched Naked Barley (볶은 쌀보리를 혼합한 녹차의 휘발성 향기성분)

  • Choi, Sung-Hee
    • Journal of Life Science
    • /
    • v.22 no.7
    • /
    • pp.981-986
    • /
    • 2012
  • To produce a new tea with a good flavor and functional properties using green tea of low quality, naked barley and barley were selected to blend with the green tea. The simultaneous distillation extraction method (SDE) using Likens and Nickerson's extraction apparatus was used to extract the volatile flavor compounds from the samples. The concentrated flavor extracts were analyzed and identified by GC and GC-MS. The GC patterns of the flavor components in two parched barleys were very different. The main volatile flavor components in two of the samples were alkyl pyrazines. Compounds including 3-methylbutanal, 2-methylbutanal, dihydro-2-methyl-3(2H)-furanone, 2,5-dimethyl pyrazine, and 3-ethyl-2.5-dimethyl pyrazine were isolated from the naked barley. Compounds including thiophenes, thiazoles, sulfides, and pyrroles with burnt odor were isolated from the barley. The parched naked barley was better than barley for adding to green tea. The main aroma components of the green tea blended with the naked barley were hexanol, hexanal, trans-2-hexenal, ${\beta}$-ionone, ${\alpha}$-ionone, alkyl pyrazines, 3-methylbutanal, 2-methylbutanal, and furfural.

Changes in Aroma Compounds of Several Byeolmijang during Aging (여러 가지 별미장의 숙성과정 중 향기성분의 변화)

  • Woo, Koan-Sik;Yu, Sun-Mi;Im, Sung-Kyung;Chun, Hye-Kyung;Kwon, Oh-Chan;Lee, Junsoo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.10
    • /
    • pp.1689-1697
    • /
    • 2004
  • Aroma compounds in 6 different Byeolmijang were extracted by SDE (simultaneous steam distillation extraction) and analyzed with GC (gas chromatography) and GC/MS (mass-spectrometry). The major aroma compounds in the 6 different Byeolmijang during aging were 1-octene-3-ol, hexanal, benzeneacetaldehyde, benzaldehyde, furfural, pyrazine compounds, benzyl-alcohol, furan compounds and phenol type compounds. Generally, benzeneacetaldehyde, benzaldehyde, furfural, pyrazine compounds and phenol type compounds were increased during aging. On the other hand, 1-octene-3-ol, hexanal, benzyl-alcohol and furan compounds were decreased during aging. 2-Heptenal and 2,4-decadienal in Daemaekjang, pyrazine and phenol type compounds in Sanghwangjang and phenol type compounds including phenol, 4-methoxy-phenol and 4-ethyl-phenol in Mujang were identified as major aroma compounds, respectively. The major aroma compound in Bizijang was 2,4-decadienal and in Sodujang, the major aroma compounds were 2,3-dihydro-benzofuran and 2-methoxy-4-vinylphenol. Linaool, geraniol, 6-elemene, 6-lonone and ledene were detected in Jigeumjang possibly due to the addition of powdered red pepper.

Identification of volatile flavor compounds in Jeju citrus fruits (제주감귤류의 휘발성 향기성분의 확인)

  • Hong, Young Shin;Kim, Kyong Su
    • Food Science and Preservation
    • /
    • v.23 no.7
    • /
    • pp.977-988
    • /
    • 2016
  • The volatile flavor compounds in five Jeju citrus fruit varieties (Cheonhyehyang, Hallabong, Jinjihyang, Hwanggeum hyang and Redhyang) were extracted by simultaneous distillation-extraction (SDE) using solvent mixture of n-pentane and diethyl ether (1:1, v/v) and analyzed by using gas chromatography-mass spectrometry (GC-MS). The number of aroma compounds were identified with : 104 (4,939.77 mg/kg) in Cheonhyehyang, 98 (3,286.38 mg/kg) in Hallabong, 105 (3,317.56 mg/kg) in Jinjihyang, 102 (4,293.39 mg/kg) in Hwanggeumhyang, and 108 (4,049.94 mg/kg) in Redhyang. The detected main volatile compounds were; limonene, sabinene, ${\beta}$-myrcene, ${\alpha}$-pinene, ${\beta}$-pinene, linalool, 4-terpineol, ${\alpha}$-terpineol, (E)-${\beta}$-ocimene and ${\gamma}$-terpinene. Among the identified volatiles compounds, ethyl-benzene, nonanol, 1-p-menthen-9-al, (E)-isocarveol, methyl salicylate, ${\alpha}$-terpinen-7-al, perilla alcohol, and ethyl-dodecanoate were detected in Cheonhyehyang. only Furthermore, ${\beta}$-chamigrene and ${\alpha}$-selinene were in Hallabong only; 3-hydroxybutanal, (E)-2-nonenal, isoborneol, octyl acetate, (E)-2-undecenal, ${\beta}$-ylangene and guaia-6,9-diene in Jinjihyang. ${\rho}$-Cymenene, ${\beta}$-thujone, selina-4,11-diene and (E,E)-2,6-farnesol in Hwanggeumhyang only; and ${\rho}$-cymen-8-ol, bornyl acetate, carvacrol, bicycloelemene, ${\alpha}$-cubebene and 7-epi-${\alpha}$-selinene in Redhyang only. This study confirmed the differences in composition and content of volatile aroma components in five varieties of Jeju citrus fruits.

Volatile Components of Green Tea(Camellia sinensis L. var. Yabukita) by Purge and Trap Headspace Sampler (Purge와 Trap Headspace Sampler를 이용한 녹차의 휘발성 성분)

  • 이재곤;권영주;장희진;곽재진;김옥찬;최영현
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.1
    • /
    • pp.25-30
    • /
    • 1997
  • Volatile components of green tea were isolated by purge and trap headspace method and were analyzed by GC and GC/MSD. And ten headspace volatiles were compared with volatiles isolated by simultaneous distillation-extraction(SDE) method. A total of 99 components were identified in the green tea volatile components, from which 88 components were identified in the headspace volatiles, contained 20 alcohols, 30 hydrocarbons, 21 aldehydes, 10 ketones, 2 acids and 5 miscellaneous components. The major components were low boiling components, such as methyl butanal(3.1%), 1-penten-3-ol(5.48%), 2-penten-1-ol(2.89%), hexanal(5.77%), heptanal(1.90%), and ere 2,4-eptadienal(4.28%), linalool(2.27%), 2,6-dimethyl cyclohexanol(2.57%), $\alpha$-pinene(1.52%), caryophyllene(1.70%), and carbonyl compounds, such as $\alpha$-ionone(2.62%), $\beta$-ionone(2.98%), $\beta$-cyclocitral(2.0%). On the other hand SDE volatiles, from which 64 components were identified, contained 16 alcohols, 16 ydrocarbons, 15 aldehydes, 10 ketones, 3 acids and 4 miscellaneous components. The major components were alcohols, such as, benzyl alcohol(3.79%), linalool(9.52%), terpineol(2.16%), geraniol(2.75%), nerolidol(6.50%), ketones, such as $\alpha$-ionone(1.77%), $\beta$-ionone(4.80%), geranyl acetone(1.82%) and acids, such as hexanoic acid(1.45%), nonanoic acid(1.11%).

  • PDF

Evaluation of Genetic Characteristics and Essential oil Composition of Coriander (Coriandrum sativum L.)

  • Tae Hee Kim;Song Mun Kim;Ki Yeon Lee;Kyung Dae Kim;Jae Hee Lee;Eun Ha Jang;Jin Gwan Ham
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.320-320
    • /
    • 2022
  • Coriander(Coriandrum sativum L.) belongs to the family Umbelliferae/Apiaceae. It is cultivated as a spice and medicinal herb around the world, including its leaves and seeds. Coriander leaves have soft and fragrant, so they can be used in cuisines such as China, Mexico, and, Southeast Asia. Coriander leaves contain a high amount of vitamin C, carotene, and multiple polyphenols. Coriander essential oils and extracts have various chemical components and are known to have antioxidant, antibacterial, and antifungal activities. This study was carried out for resource discovery, propagation, and DB construction of aromatic plants. In order to evaluate the genetic characteristics, 30 kinds of Coriander seeds were supplied from the Center for Genetic Resources. The evaluation of characteristics of the basal part leaf number, leaf shape, and plant height was investigated. Also, Essential oils extract from various parts of plants including the leaves, flowers, and steam isolated by simultaneous distillation extraction(SDE) apparatus. In the results, heights showed growing to 70 cm over and basal part leaf number 0 to7. The leaves are variable, they are measured according to leaves incisions, and most of the included incision. The qualitative analysis of EOs was performed using gas chromatography-mass spectrometry. EOs had various chemical compositions. Major compounds were trans-2-Decenal, linalool, decanal, 2-Dodecenal, 13-Tetradecanal, 2-Undecenal.

  • PDF

Analysis of Volatile Compounds and Enantiomeric Separation of Chiral Compounds of Dried Sancho (Zanthoxylum schinifolium Siebold & Zucc)

  • Seo, Hye-Young;Shim, Sung-Lye;Ryu, Keun-Young;Jung, Min-Seok;Hwang, In-Min;Shin, Dong-Bin;Kwon, Joong-Ho;Schreier, Peter;Kim, Kyong-Su
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.18-24
    • /
    • 2009
  • The volatile compounds of dried sancho (Zanthoxylum schinifolium), an aromatic plant were extracted by simultaneous distillation and extraction (SDE) method and identified by gas chromatograph-mass spectrometry (GC-MS). Selected chiral constituents of sancho oil were characterized by enantiodifferentiation using multidimensional gas chromatograph (MDGC)-MS. A total of 57 compounds were identified and quantified, and the major compounds were identified estragole, nonanoic acid, octanoic acid, $\beta$-phellandrenene, and limonene. Among them, estragol (63.9%) was found as the predominantly abundant component of sancho. $\alpha$-pinene and nerolidol, and $\beta$-pinene and linalool were determined to be enantiomerically pure (100%) for their (S)-form and (R)-form, respectively. The enantiomeric composition of limonene in sancho revealed 83.9% purity for the (S)-enantiomer, whereas (E)- and (Z)-rose oxides showed mixtures of both enantiomers. The enantiomeric excess (%) for citronellal was 22.6% with the (R)-enantiomer as major enantiomer. The enantiomeric composition of these compounds can be used as parameter for authenticity control of sancho.

Volatile Components of Kumquat(Fortunella margarita) (금귤의 휘발성 향기성분)

  • Kwag, Jae-Jin;Kim, Do-Yeon;Lee, Keun-Hoi
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.423-427
    • /
    • 1992
  • The volatile components were extracted from kumquat(Fortunella margarita) by simultaneous steam distillation-extraction method and fractionated on silica gel column. The total volatile oil was eluted off first by n-pentane and eluted again by diethyl ether. The total volatile oil and diethyl ether fraction were analyzed by GC and GC-MS. In the total volatile oil, 10 components were identified, of which major ones were limonene(96.5%, of total volatile oil), ${\beta}-pinene$(1.93%) and ${\alpha}-terpineol$(0.42%) and then the characteristic aroma of kumquat appeared to be due to limonene. On the other hand diethyl ether fraction, from which 46 components were identified, contained 9 alcohols, 22 terpenes and terpene alcohols, 7 aldehydes and ketones, 7 esters and 1 miscellaneous components. The major components were ${\alpha}-terpineol$(31.98% of diethyl ether fraction), ${\beta}-terpineol$(7.37%), geranyl acetate(9.69%) and p-menthadien-9-ol(4.12%).

  • PDF

Identification of Volatile Essential Oil, and Flavor Characterization and Antibacterial Effect of Fractions from Houttuynia cordata Thunb -I. Identification of Volatile Essential Oil Compounds from Houttuynia cordata Thunb -I. Identification of Volatile Essential Oil Compounds from Huttuynia cordata Thunb- (어성초 휘발성 정유성분의 동정과 분획물의 향특성 및 항균활성 -I. 어성초의 휘발성 정유성분의 동정-)

  • Kang, Jung-Mi;Cha, In-Ho;Lee, Young-Kuen;Ryu, Hong-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.2
    • /
    • pp.209-213
    • /
    • 1997
  • Since Houttuynia cordata is well known as a medicinal herb, due to its antibacterial activity on various microorganisms, present investigation was performed to identify the flavor compounds for volatile essential oil. Volatile essential oil was collected by simultaneous distillation-extraction(SDE), and then the oil components were separated on HP-5 capilliary column$(25m{\times}0.25mm\; i.d.)$ and identified those components by GC-MS. Fifty two compounds were isolated from the volatile essential oil of Houttuynia cordata and forty four were positively identified by GC-MS. The volatile compounds were composed mainly of terpenoids(25 classes), aldehydes(7 classes), alcohols(4 classes), ketones(3 classes), acids(1 class) and miscellaneous compounds(4 classes). Of these, the major compounds were ${\beta}-myrcene$, ${\beta}-ocimene$, decanal, 2-undecanone and geranyl propionate.

  • PDF

Analysis of Volatile Flavor Components from Allium senescens (두메부추의 휘발성 향기성분 분석)

  • 이미순;정미숙
    • Korean journal of food and cookery science
    • /
    • v.17 no.1
    • /
    • pp.55-59
    • /
    • 2001
  • To investigate the usefulness of Allium senescens as a aromatic edible plant, volatile flavor components and flavor pattern were analyzed. Essential oils of fresh and freeze dried Allium senescens were extracted by SDE(simultaneous steam distillation and extraction) method using diethyl ether as solvent. And their volatile flavor components were analyzed by gas chromatography(GC) and gas chromatography-mass spectrometry (GC-MS). A total of 46 components, including 11 hydrocarbons, 9 aldehydes, 4 alcohols, 2 esters, 7 acids, 4 ketones and 9 sulfur containing compounds were identified in fresh Allium senescens. In freeze dried Allium senescens, 8 hydrocarbons, 5 aldehydes, 3 alcohols, 5 esters, 2 acids, 3 ketones and 4 sulfur containing compounds were identified. Volatile flavor patterns of Chinese chive and Allium senescens were compared using electronic nose. The score of first principal component was significantly different in Allium senescens and Chinese chive.

  • PDF

Analysis of Volatile Flavor Components of Aster glehni (섬쑥부쟁이의 휘발성 향미성분 분석)

  • 이미순;정미숙
    • Korean journal of food and cookery science
    • /
    • v.14 no.5
    • /
    • pp.547-552
    • /
    • 1998
  • Essential oils in leaf of fresh Aster glehni were extracted by SDE (simultaneous steam distillation and extraction) method using diethyl ether as solvent. The yield of the essential oils was 0.05%. And their volatile flavor components were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) and identified by the RI of GC and mass spectrum of GC-MS. A total of 31 components, including 17 hydrocarbons, 2 aldehydes, 7 alcohols, 3 esters, 1 acid and 1 oxide were identified. The major volatile flavor components of fresh Aster glehni were ${\alpha}$-pinene, limonene, $\delta$-elemene, ${\beta}$-pinene, cis-3-hexenol and myrcene. Volatile flavor patterns of fresh ind dried Aster glehni were analyzed using an electronic nose. Sensor PA2 that was sensitive to alcohols showed the highest resistance for fresh and dried Aster glehni. Resistance of six metal oxide sensors was decreased in fresh sample compared with dried one.

  • PDF