• 제목/요약/키워드: simulation variable

검색결과 2,461건 처리시간 0.031초

Variable stability system control law development for in-flight simulation of pitch/roll/yaw rate and normal load

  • Ko, Joon Soo;Park, Sungsu
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권4호
    • /
    • pp.412-418
    • /
    • 2014
  • This paper describes the development of variable stability system (VSS) control laws for the KFA-i to simulate the dynamics of KFA-m aircraft. The KFA-i is a single engine, Class IV aircraft and was selected as an in-flight simulator (IFS) aircraft, whereas the KFA-m is a simulated aircraft that is based on the F-16 aircraft. A 6-DoF math model of KFA-i aircraft was developed, linearized, and separated into longitudinal and lateral motion for VSS control law synthesis. The KFA-i aircraft has five primary control surfaces: two flaperons, two all movable horizontal tails, and one rudder. Flaperons are used for load control, the horizontal tails are used for pitch and roll rate control, and the rudder is used for yaw rate control. The developed VSS control law can simulate four parameters of the KFA-m aircraft simultaneously, such as pitch, roll, yaw rates, and load. The simulation results show that KFA-i follows the responses of KFA-m with high accuracy.

다변수 최적화 기법을 이용한 자동차용 고분자전해질형 연료전지 시스템 모델링에 관한 연구 (A Study of Modeling PEM Fuel Cell System Using Multi-Variable Optimization Technique for Automotive Applications)

  • 김한상;민경덕;전순일;김수환;임태원;박진호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 제17회 워크샵 및 추계학술대회
    • /
    • pp.541-544
    • /
    • 2005
  • This study presents the integrated modeling approach to simulate the proton exchange membrane (PEM) fuel cell system for vehicle application. The fuel cell system consisting of stack and balance of plant (BOP) was simulated with MATLAB/Simulink environment to estimate the maximum system power and investigate the effect of BOP component sizing on system performance and efficiency. The PEM fuel cell stack model was established by using a semi-empirical modeling. To maximize the net efficiency of fuel cel1 system, multi-variable optimization code was adopted. Using this method the optimized operating values were obtained according to various system net power levels. The fuel cell model established was co-linked to AVL CRUISE, a vehicle simulation package. Through the vehicle simulation software, the fuel economy of fuel cell powered electric vehicle for two types of driving cycles was presented and compared. It is expected that this study tan be effectively employed in the basic BOP component sizing and in establishing system operation map with respect to net power level of fuel cell system.

  • PDF

밀러사이클 적용 HEV 엔진 실린더의 가변흡기밸브 닫힘각에 따른 실린더내 유동해석 (Analysis of In-cylinder Flow in a Miller Cycle Engine with Variable IVC for HEV)

  • 김상명;성기수;이진욱
    • 한국분무공학회지
    • /
    • 제19권1호
    • /
    • pp.25-32
    • /
    • 2014
  • For reduction of $CO_2$ emission emitted from combustion engine, the developed nations have been focused on R&D of hybrid electric vehicle. Further more, many automobile companies are researching on various techniques related to engine used in HEV to enhance fuel economy. One of key techniques is miller cycle that control a valve timing to reduce compression stroke for saving energy and increase expansion stroke for high power. In this study, it was investigated the in-cylinder flow characteristics of miller cycle with variable intake valve timing by using the ANSYS simulation code. For simulation, the key analytic parameter defined as intake valve closing timing and cam profile. As main results, it was shown that LIVC cause a lower pressure inside cylinder and had better control turbulence intensity.

다변수 최적화 기법을 이용한 자동차용 고분자 전해질형 연료전지 시스템 모델링에 관한 연구 (A Study of Modeling PEM Fuel Cell System Using Multi-Variable Optimization Technique for Automotive Applications)

  • 김한상;민경덕;전순일;김수환;임태원;박진호
    • 신재생에너지
    • /
    • 제1권4호
    • /
    • pp.43-48
    • /
    • 2005
  • This study presents the integrated modeling approach to simulate the proton exchange membrane [PEM] fuel cell system for vehicle application. The fuel cell system consisting of stack and balance of plant (BOP) was simulated with MATLAB/Simulink environment to estimate the maximum system power and investigate the effect of BOP component sizing on system performance and efficiency. The PEM fuel cell stack model was established by using a semi-empirical modeling. To maximize the net efficiency of fuel cell system, multi-variable optimization code was adopted. Using this method, the optimized operating values were obtained according to various system net power levels. The fuel cell model established was co-linked to AVL CRUISE, a vehicle simulation package. Through the vehicle simulation software, the fuel economy of fuel cell powered electric vehicle for two types of driving cycles was presented and compared. It is expected that this study can be effectively employed in the basic BOP component sizing and in establishing system operation map with respect to net power level of fuel cell system.

  • PDF

Adaptive Variable Angle Control in Switched Reluctance Motor Drives for Electric Vehicle Applications

  • Cheng, He;Chen, Hao;Xu, Shaohui;Yang, Shunyao
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1512-1522
    • /
    • 2017
  • Switched reluctance motor (SRM) is suitable for electric vehicle (EV) applications with the advantages of simple structure, good overload capability, and inherent fault-tolerance performance. The SRM dynamic simulation model is built based on torque, voltage, and flux linkage equations. The EV model is built on the basis of the analysis of forces acting on a vehicle. The entire speed range of the SRM drive is then divided into constant torque and constant power areas. The command torque of the motor drive system is given according to the accelerator pedal coefficient and motor operation areas. A novel adaptive variable angle control is proposed to avoid the switching chattering between the current chopping control and angle position control modes in SRM drives for EV applications. Finally, simulation analysis and experimental results are conducted to verify the accuracy of the proposed simulation model and control strategy.

A Variable Selection Procedure for K-Means Clustering

  • Kim, Sung-Soo
    • 응용통계연구
    • /
    • 제25권3호
    • /
    • pp.471-483
    • /
    • 2012
  • One of the most important problems in cluster analysis is the selection of variables that truly define cluster structure, while eliminating noisy variables that mask such structure. Brusco and Cradit (2001) present VS-KM(variable-selection heuristic for K-means clustering) procedure for selecting true variables for K-means clustering based on adjusted Rand index. This procedure starts with the fixed number of clusters in K-means and adds variables sequentially based on an adjusted Rand index. This paper presents an updated procedure combining the VS-KM with the automated K-means procedure provided by Kim (2009). This automated variable selection procedure for K-means clustering calculates the cluster number and initial cluster center whenever new variable is added and adds a variable based on adjusted Rand index. Simulation result indicates that the proposed procedure is very effective at selecting true variables and at eliminating noisy variables. Implemented program using R can be obtained on the website "http://faculty.knou.ac.kr/sskim/nvarkm.r and vnvarkm.r".

일차 Dynamic을 갖는 계통에 대한 가변구조 제어기의 설계 (The Design of Variable Structure Controller for the Systems Having the First Order Dynamic)

  • 박귀태;최종경;김동식
    • 대한전기학회논문지
    • /
    • 제41권4호
    • /
    • pp.392-399
    • /
    • 1992
  • This paper will describe the application of variable structure control theory to the first order dynamic system and verify its robustness. The study on the first order dynamic system control which has been essential part for the control of servo motor (AC,DC) systems has been excluded in the study of variable structure control system(VSCS) because this first order system was not applicable to the previous variable structure control theory. So, for the robustness control of first order dynamic system with variable structure control theory, we propose modified switching function synthesis which guarantees the advantages of conventional VSCS and removes reaching phase which is regarded as shortcomings in VSCS. And we demonstrate the practical potential of implementation about this theory by simulation results of AC motor variable speed control.

일차 dynamic을 갖는 계통에 대한 가변구조 제어기의 설계 (The design of variable structure controller for the systems having the first order dynamic)

  • 박귀태;최중경;강윤관
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.179-184
    • /
    • 1991
  • This paper will describe the application for variable structure control theory to the first order dynamic system and verify it's robustness. The study on the first order dynamic system control which has been essential part for the control of servo motor (AC, DC) systems has been excluded in the study of variable structure control system(VSCS) because this first order system was not applicable to the previous variable structure control theory. So, for the robustness control of first order dynamic system with variable structure control theory, we propose modified switching function synthesis which guarantees the advantages of conventional VSCS and removes reaching phase which regards as shortcomings in VSCS. And we demonstrate the practical potential of implementation about this theory by simulation results of AC motor variable speed control.

  • PDF

반능동형 머플러의 배기가변밸브 스프링 적정상수에 관한 연구 (A Study on the Suitable Number of the Exhaust Variable Valve Spring for Semi-active Muffler)

  • 박세종;서호철;손성만;박경석
    • 한국정밀공학회지
    • /
    • 제23권5호
    • /
    • pp.137-142
    • /
    • 2006
  • The muffler which reduce the exhaust noise and vibration from engine influence on the engine performance. Recently, exhaust variable valve has set up in the muffler controls the backpressure in the exhaust system. And the backpressure variation according to the exhaust variable valve opening has developed the engine performance. First, the preceding of structural analysis is needed and simulation experiment is requested for the study on the design factor to influence on the operation of the exhaust variable valve. In this study, setting up the various variables according to each composition element needed for the structural analysis of the exhaust variable valve, it is experimented the analysis on the influence of each design factor with the calculation of stress distribution and the displacement to cause about the backpressure for the valve through parameter study.