• 제목/요약/키워드: simulation for avoiding typhoon

검색결과 3건 처리시간 0.016초

A Study on the Development of Typhoon Track Forecast Model Based on the Past Track Data

  • Jin, Guo-Zhu;Song, Chae-Uk
    • 한국항해항만학회지
    • /
    • 제28권4호
    • /
    • pp.311-315
    • /
    • 2004
  • This paper is aimed to develop a mathematical model for making the forecast information of typhoon's movement such as the estimated movement direction and positions after 24 and 48 hours. The proposed model calculates such kind of information of a typhoon by similar past typhoon's track data which are selected with three similarity criteria among the database of typhoons' tracks for past fifty years. We carried out a simulation forecast with No.14 typhoon formed in 1997, and found that the results of the proposed model were reasonable and it would be suitable for a simulation system for training mariners so that they can take suitable actions to evade the typhoons.

A Study on the Development of Wind and Wave Model of Typhoon

  • Jin Guo-Zhu;Song Chae-Uk;Seol Dong-Il
    • 한국항해항만학회지
    • /
    • 제28권9호
    • /
    • pp.815-820
    • /
    • 2004
  • In this paper, after analyzing other models with their advantages and disadvantages, we proposed a simple parametric model for calculating wind speed & direction and wave height & direction at any location around the typhoon at sea. The proposed wind-field model of typhoon is asymmetric, and consists of a circular symmetric wind-field caused by the pressure gradient of stationary typhoon and a moving wind-field caused by the movement of typhoon. By verifying this model through observed data, we found that it is accurate enough to develop the simulation software for training students and seafarers so as to take appropriate actions while being faced with the typhoon at sea.

Numerical simulation of infill CACB wall cracking subjected to wind loads

  • Ruige Li;Yu Gao;Hongjian Lin;Mingfeng Huang;Chenghui Wang;Zhongzhi Hu;Lingyi Jin
    • Structural Engineering and Mechanics
    • /
    • 제89권5호
    • /
    • pp.479-489
    • /
    • 2024
  • The cracking mechanism in ceramsite aerated concrete block (CACB) infill walls were studied in low seismic fortification intensity coastal areas with frequent occurrence of typhoons. The inter-story drifts of an eight-story residential building under wind loads and a seismic fortification intensity of six degrees were analyzed by using the PKPM software. The maximum inter-story drift ratio of the structure in wind load was found to be comparable to that under the seismic fortification intensity of six degrees. However, when accounting for the large gust wind speed of typhoon, the maximum inter-story drift ratio was much larger than that obtained under reference wind load. In addition, the finite element models of RC frames were employed by displacement loading to simulate two scenarios with and without window hole in the CACB infill walls, respectively. The simulation results show no signs of cracking in both the infill walls with window hole and those without window for the inter-story drift caused by seismic loads and the reference wind load. However, both types of infill walls experienced structural creaking when assessing the gust wind pressure recorded from previous typhoon monitoring. It is concluded that an underestimate of wind loads may contribute substantially to the cracking of frame CACB infill walls in low seismic fortification intensity coastal areas. Consequently, it is imperative to adopt wind pressure values derived from gust wind speeds in the design of CACB infill walls within frame structures. Finally, the future research directions of avoiding cracks in CACB filled walls were proposed. They were the material performance improving and building structure optimizing.