• Title/Summary/Keyword: simulated specimen

Search Result 201, Processing Time 0.024 seconds

Numerical simulation of fracture and damage behaviour of concrete at different ages

  • Jin, Nanguo;Tian, Ye;Jin, Xianyu
    • Computers and Concrete
    • /
    • v.4 no.3
    • /
    • pp.221-241
    • /
    • 2007
  • Based on the experiment results, the damage and fracture behavior of concrete at the ages of 1d, 2d, 7d and 28d, in three-point bending and uniaxial tensile tests, were simulated with a finite element program, ABAQUS. The critical stress intensity factor $K_{IC}^s$ and the critical crack tip opening displacement ($CTOD_C$) of concrete were calculated with effective-elastic crack approach for the three-point bending test of grade C30 concrete. Based on the crack band model, a bilinear strain-softening curve was derived to simulate the LOAD-CMOD curves and LOAD-Displacement curves. In numerical analysis of the uniaxial tension test of concrete of grade C40, the damage and fracture mechanics were combined. The smeared cracking model coupling with damaged variable was adopted to evaluate the onset and development of microcracking of uniaxial tensile specimen. The uniaxial tension test was simulated by invoking the damage plastic model which took both damage and plasticity as inner variables with user subroutines. All the numerical simulated results show good agreement with the experimental results.

Environmentally Assisted Crack Growth Behavior of SA508 Cl.3 Pressure Vessel Steel

  • Kim, Jun-Hwan;Kim, In-Sup
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.154-159
    • /
    • 1998
  • In order to assess the susceptibility of the environmentally assisted cracking(EAC) on SA508 Cl.3 steel in primary water condition, potential step test and slow strain rate test(SSRT) were conducted in a simulated crack tip condition. In this test, anodic dissolution was dominant in the crack tip environments. Proposed simple dissolution model is a modification of Hishida's anodic dissolution model at the plastic zone. One can predict actual crack growth rate with the smooth specimen through this model.

  • PDF

Study on the Biocompatibility of Hydroxyapatite Bioceramics : (II) Behavior in Simulated Body Fluid and Biocompatibility (Hydroxyapatite Bioceramics의 생체 친화성에 관한 연구 : (II) 인공 체액에서의 거동 및 생체 친화성)

  • 김양수;고형열;송종택;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.6
    • /
    • pp.721-728
    • /
    • 1990
  • Hydroxyapatite powders were synthesized with Ca/P=1.67 and pH=11 by precipitaton method, after characterization of these specimen, behavior in Ringer's solution and biocompatibility of hydroxyapatite, such as cytotoxity test and implantation test, were investigated. The hydroxyapatite ceramics had structural stability in Ringer's solution, and hydroxyapatite ceramics did not prevent cell growing and exhibit any cytotoxic effects. In implantation of hydroxyapatite ceramics into muscle under abdome of guinea pig, hydroxyapatite ceramics did not show any symptom of rejection for cellular texture.

  • PDF

Hysteretic Behavior and Seismic Resistant Capacity of Precast Concrete Beam-to-Column Connections (프리캐스트 콘크리트 보-기둥 접합부의 이력거동 및 내진성능)

  • Choi, Hyun-Ki;Choi, Yun-Cheul;Choi, Chang-Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.61-71
    • /
    • 2010
  • Five half-scale beam-to-column connections in a precast concrete frame were tested with cyclic loading that simulated earthquake-type motions. Five half -scale interior beam-column assemblies representing a portion of a frame subjected to simulated seismic loading were tested, including one monolithic specimen and four precast specimens. Variables included the detailing used at the joint to achieve a structural continuity of the beam reinforcement, and the type of special reinforcement in the connection (whether ECC or transverse reinforcement). The specimen design followed the strong-column-weak-beam concept. The beam reinforcement was purposely designed and detailed to develop plastic hinges at the beam and to impose large inelastic shear force demands into the joint. The joint performance was evaluated on the basis of connection strength, stiffness, energy dissipation, and drift capacity. From the test results, the plastic hinges at the beam controlled the specimen failure. In general, the performance of the beam-to-column connections was satisfactory. The joint strength was 1.15 times of that expected for monolithic reinforced concrete construction. The specimen behavior was ductile due to tensile deformability by ECC and the yielding steel plate, while the strength was nearly constant up to a drift of 3.5 percent.

Effect of Restraint Stress on the Precipitation Behavior and Thermal Fatigue Properties of Simulated Weld Heat Affected Zone in Ferritic Stainless Steel (페라이트계 스테인리스강 재현 용접 열 영향부의 석출거동 및 열피로 특성에 미치는 구속응력의 영향)

  • Han, Kyutae;Kang, Yongjoon;Lee, Sangchul;Hong, Seunggab;Jeong, Hongchul;Lee, Changhee
    • Journal of Welding and Joining
    • /
    • v.33 no.6
    • /
    • pp.6-12
    • /
    • 2015
  • Thermal fatigue life of the automobile exhaust manifold is directly affected by the restraint force according to the structure of exhaust system and bead shape of the welded joints. In the present study, the microstructural changes and precipitation behavior during thermal fatigue cycle of the 18wt% Cr ferritic stainless steel weld heat affected zone (HAZ) considering restraint stress were investigated. The simulation of weld HAZ and thermal fatigue test were carried out using a metal thermal cycle simulator under complete constraint force in the static jig. The change of the restraint stress on the weld HAZ was simulated by changing the shape of notch in the specimen considering the stress concentration factor. Thermal fatigue properties of the weld HAZ were deteriorated during cyclic heating and cooling in the temperature range of $200^{\circ}C$ to $900^{\circ}C$ due to the decrease of Nb content in solid solution and coarsening of MX type precipitates, laves phase, $M_6C$ with coarsening of grain and softening of the matrix. As the restraint stress on the specimen increased, the thermal fatigue life was decreased by dynamic precipitation and rapid coarsening of the precipitates.

The Specific Case Analysis of Biomineralization Induced by Sulfate Reducing Bacteria

  • Liu, Hongwei;Qin, Shuang;Fu, Chaoyang;Xiao, Fei;Wang, Deli;Han, Xia;Wang, Tianli;Liu, Hongfang
    • Corrosion Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.285-293
    • /
    • 2017
  • The effects of sulfate reducing bacteria (SRB) on the corrosion and scaling of the Q235 carbon steel has been investigated in the simulated sewage water and oil field gathering pipelines production water, using scanning electron microscopy (SEM), energy dispersive x-ray spectrometry (EDS), and three-dimensional stereoscopic microscope. Results indicated that the concentration of SRB reached the maximum value on the ninth day in simulated sewage water with a large amount of scaling on the surface of specimen. In oil field gathering pipelines, a large amount of scaling and mineralization of mineral salts and thick deposition of extracellular polymeric substance (EPS) layers were also observed on the surface of specimen. The thickness of biofilm was about $245{\mu}m$ within 30 days. After adding microbicides, the thickness of corrosion products film was only up to $48-106{\mu}m$ within 30 days, suggesting that SRB could induce biomineralization. Under-deposit corrosion morphology was uniform in the absence of microbicides while local corrosion was observed in the presence of microbicides.

Redistributions of Welding Residual Stress for CTOD Specimen by Local Compression (Local compression에 의한 CTOD 시편내의 용접잔류응력 재분포)

  • Joo, Sung-Min;Yoon, Byung-Hyun;Chang, Woong-Seong;Bang, Han-Sur;Bang, Hee-Seon;Ro, Chan-Seung
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.31-35
    • /
    • 2009
  • When conducting CTOD test, especially in thick welded steel plate, fatigue pre-cracking occasionally failed to satisfy the requirements of standards thus making the test result invalid. Internally accumulated residual stress of test piece has been thought as one of the main reasons. The propagation of fatigue crack, started from the tip of machined notch, which might have propagated irregularly due to residual stress field. To overcome this kind of difficulty three methods to modify the residual stress are suggested in standard i.e. local compression, reverse bending and stepwise high-R ratio method. In this paper not only multi pass welding but also local pre-compressing process of thick steel plate has been simulated using finite element method for clarifying variation of internal welding residual stress. The simulated results show that welding residual stress is compressive in the middle section of the model and it is predominantly increased after machining the specimen. Comparing as-welded state all component of the welding residual stress changing to compressive in the tip of machine notch whereas residual stress of the outer area remain as tensile condition relatively. Analysis results also show that this irregular residual stress distribution is improved to be more uniformly by applying local compression.

Design Optimization of Automotive Rear Cross Member with Cold-rolled Ultra High Strength Steel (냉연 초고강도강 적용 차량용 리어 크로스 멤버 형상 설계 변수 최적화)

  • J. Y. Kim;S. H. Kim;D. H. Choi;S. Hong
    • Transactions of Materials Processing
    • /
    • v.33 no.2
    • /
    • pp.103-111
    • /
    • 2024
  • With the increasing global interest in carbon neutrality, the automotive industry is also transitioning to the production of eco-friendly cars, specifically electric vehicles. In order to achieve comparable driving distances to internal combustion engine vehicles, the application of high-capacity battery packs has led to an increase in vehicle weight. To achieve light-weighting and durability requirements of automotive components simultaneously, there is a demand for research on the application of Ultra-High Strength Steel (UHSS). However, when manufacturing chassis components using UHSS, there are challenges related to fracture defects due to lower elongation compared to regular steel sheets, as well as spring-back issues caused by high tensile strength. In this study, a simulated specimen that is not affected by the property changes of four materials was designed to improve formability of the rear cross member, which is the most challenging automotive chassis component. The influence and correlation of material-specific variables were analyzed through finite element analysis (FEA) for each material with tensile strength of 440, 590, 780, and 980 MPa grades, resulting in the development of a predictive equation. To validate the equation, the simulated specimens of 980 MPa grade were produced from the test molds. Then the reliability of the FEA and predictive equation was verified with measured specimen data using a 3D scanner. The results of this study can be proposed to improve the formability of UHSS chassis components in future researches.

Bonding values of two contemporary ceramic inlay materials to dentin following simulated aging

  • Khalil, Ashraf Abdelfattah;Abdelaziz, Khalid Mohamed
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.6
    • /
    • pp.446-453
    • /
    • 2015
  • PURPOSE. To compare the push-out bond strength of feldspar and zirconia-based ceramic inlays bonded to dentin with different resin cements following simulated aging. MATERIALS AND METHODS. Occlusal cavities in 80 extracted molars were restored in 2 groups (n=40) with CAD/CAM feldspar (Vitablocs Trilux forte) (FP) and zirconia-based (Ceramill Zi) (ZR) ceramic inlays. The fabricated inlays were luted in 2 subgroups (n=20) with either etch-and-bond (RelyX Ultimate Clicker) (EB) or self-adhesive (RelyX Unicem Aplicap) (SA) resin cement. Ten inlays in each subgroup were subjected to 3,500 thermal cycles and 24,000 loading cycles, while the other 10 served as control. Horizontal 3 mm thick specimens were cut out of the restored teeth for push out bond strength testing. Bond strength data were statistically analyzed using 1-way ANOVA and Tukey's comparisons at ${\alpha}=.05$. The mode of ceramic-cement-dentin bond failure for each specimen was also assessed. RESULTS. No statistically significant differences were noticed between FP and ZR bond strength to dentin in all subgroups (ANOVA, P=.05113). No differences were noticed between EB and SA (Tukey's, P>.05) bonded to either type of ceramics. Both adhesive and mixed modes of bond failure were dominant for non-aged inlays. Simulated aging had no significant effect on bond strength values (Tukey's, P>.05) of all ceramic-cement combinations although the adhesive mode of bond failure became more common (60-80%) in aged inlays. CONCLUSION. The suggested cement-ceramic combinations offer comparable bonding performance to dentin substrate either before or after simulated aging that seems to have no adverse effect on the achieved bond.