• Title/Summary/Keyword: simulated acid rain

Search Result 82, Processing Time 0.026 seconds

Effect of simulated Acid Rain on the Morphology and Enzyme of Perilla frutescens var. japonica Hara (인공산성비가 들깨의 생장 및 효소에 미치는 영향)

  • Heo, Man-Gyu;Seo, Gang-Tae;Heo, Hong-Uk
    • Journal of Environmental Science International
    • /
    • v.5 no.2
    • /
    • pp.171-178
    • /
    • 1996
  • This experiment was performed with the purpose of finding out the effect of simulated acid rain at various pH levels on the morphology and enzyme of Perilla frutescens var. japonica hara. The pH levels of simulated acid rain ranged from pH 2.0 to pH 6.0. The experiment showed the anion concentrations in the order of $SO_4^{2-}$, Cl^-$, $NO_3^-$, and $F^-$, $SO_4^{-2}$ was found out to be the main factor which contributed to the rainwater acidification. A general decrease of growth in Perilla frutescens var. japonica hara growth was shown with the decreas of pH concentration. As acidity increases a definite reduction in the rates of germination, heigth of plant, malate dehydrogenase, and 6-phosphogluconate dehydrogenase was ovserved, but the density of spots on the leaf apex was increased.

  • PDF

Effects of simulated acid rain on microbial activities and litter decomposition

  • Lim, Sung-Min;Cha, Sang-Seob;Shim, Jae-Kuk
    • Journal of Ecology and Environment
    • /
    • v.34 no.4
    • /
    • pp.401-410
    • /
    • 2011
  • We assayed the effects of simulated acid rain on the mass loss, $CO_2$ evolution, dehydrogenase activity, and microbial biomass-C of decomposing Sorbus alnifolia leaf litter at the microcosm. The dilute sulfuric acid solution composed the simulated acid rain, and the microcosm decomposition experiment was performed at 23$^{\circ}C$ and 40% humidity. During the early decomposition stage, decomposition rate of S. alnifolia leaf litter, and microbial biomass, $CO_2$ evolution and dehydrogenase activity were inhibited at a lower pH; however, during the late decomposition stage, these characteristics were not affected by pH level. The fungal component of the microbial community was conspicuous at lower pH levels and at the late decomposition stage. Conversely, the bacterial community was most evident during the initial decomposition phase and was especially dominant at higher pH levels. These changes in microbial community structure resulting from changes in microcosm acidity suggest that pH is an important aspect in the maintenance of the decomposition process. Litter decomposition exhibited a positive, linear relationship with both microbial respiration and microbial biomass. Fungal biomass exhibited a significant, positive relationship with $CO_2$ evolution from the decaying litter. Acid rain had a significant effect on microbial biomass and microbial community structure according to acid tolerance of each microbial species. Fungal biomass and decomposition activities were not only more important at a low pH than at a high pH but also fungal activity, such as $CO_2$ evolution, was closely related with litter decomposition rate.

Effects of Simulated Acid Rain on Growth and Contents of Chemical Substances in Needles of Pinus koraiensis Seedlings and on Chemical Properties of the Tested Soil (인공산성우(人工酸性雨)가 잣나무 유묘(幼苗)의 생장(生長), 엽내함유성분(葉內含有成分) 및 토양(土壤)의 화학적(化學的) 성질(性質)에 미치는 영향(影響))

  • Cheong, Yong Moon
    • Journal of Korean Society of Forest Science
    • /
    • v.76 no.1
    • /
    • pp.33-40
    • /
    • 1987
  • Simulated acid rain (pH 4.0, pH 2.0) containing sulfuric and nitric acid in the ratio of 60:40 (chemical equivalent basis) diluted with underground water, and underground water (pH 6.5) as control were treated on potted Pines koraiensis seeds during the growing season (May 1 to August 31) in 1985. The regime of artificial acid rain, in terms of spray frequency and amount per plot, was simulated on the basis of climatological data averaged for 30 years of records. The seedling growth, contents of chemical substances in needles and chemical properties of the tested soil were compared among the various pH levels of acid rain on October 31, 1985. Following results were obtained. 1. With decreasing pH levels of acid rain, S and $K_2O$ contents in leaf tissue were increased, but MgO and $P_2O_5$ contents were decreased. 2. Soil pH was dropped, and exchangeable aluminum content in the tested soil was dramatically increased as the pH levels of acid rain decreased. 3. Exchangeable calcium, magnesium, potassium contents, and base saturation degree of the soil were significantly decreased with decreasing pH levels of acid rain. 4. Sulfate concentrations in the soil were significantly increased as rain pH decreased, but total nitrogen and available phosphate contents were not influenced by acid rain.

  • PDF

Effect of Simulated Acid Rain on Germination, Growth, Acid Buffering Capacity and Nutrient Leaching in Impatiens balsamina L. and Tagetes patula L. (산성비가 봉선화(Impatiens balsamina L.) 및 만수국(Tagetes patula L.)의 발아, 생장, 완충능력 및 양료용탈에 미치는 영향)

  • 김학윤;이인중;신동현;김길웅;조문수
    • Journal of Life Science
    • /
    • v.10 no.6
    • /
    • pp.598-604
    • /
    • 2000
  • This study was conducted to investigate the effect of simulated acid rain (SAR) on germination, growth, acid buffering capacity and nutrient leaching in Impatiens balsamina L. and Tagetes patula L.. In both species, germination was not inhibited at pH 4.0, but the germination rate decreased at the lower pH of 3.0, showing higher rate in Inpatiens balsamina L. than Tagetes patula L.. As the pH decreases, the growth of radicle was markedly decreased than that of hypocotyl in both species. The plant height, root length, leaf area, total dry weight, relative growth rate and net assimilation rate were inhibited by SAR. The acid buffering capacity in the leaves were increased at pH 4.0, on the other hand, it was shown a tendency to decrease at pH 2.0 in both species. As the pH levels decreased from 5.6 to 2.0, the nutrient leaching from leaves was significantly increased in both species. Based on the results, there are a great difference in the responses to SAR between the two species. In general, Tagetes patula L. represented a higher tolerance to SAR than Impatiens balsamina L.. These results suggested that interspecific variation in the acid buffering capacity and nutrient leaching from leaves may be responsible for the interspecific susceptibility to SAR.

  • PDF

Effects of Simulated Acid Rain on Nutrient Contents of Pinus densiflora S. et Z. and Forsythia koreana Nak. Seedlings (인공산성우(人工酸性雨)가 소나무 및 개나리묘(苗)의 식물체내(植物體內) 함유성분(含有成分)에 미치는 영향(影響))

  • Cheong, Yong Moon
    • Journal of Korean Society of Forest Science
    • /
    • v.77 no.3
    • /
    • pp.259-268
    • /
    • 1988
  • For the purpose of examining the effects of simulated acid rain on nutrient contents of plant tissues in Pintos densiflora seedlings and Forsythia koreana rooted cuttings, the experimental design of randomized block arrangement with three replications was implemented in the experimental field of Yesan National Agricultural Junior College. One-year-old Pinus densiflora seedlings and Forsythia koreana cuttings were planted in the pots filled the mixed soils(nursery soil : forest soil of siliceous sandy loam=1 : 1 v/v) in the early spring of 1986. The regime of artificial acid rain, in terms of spray frequency per month and spray amount at single treatment per plot, was simulated on the basis of climatological data averaged from 30 years records. Simulated acid rain(pH 2.0, pH 4.0, and pH 5.5 as control) containing sulfuric and nutric acid in the ratio of 3 : 2(chemical equivalant basis) diluted with ground water were treated on the experimental plants under condition of cutting off the natural precipitation with vinyl tunnel, during the growing season(May 1 to August 31) in 1986. The results obtained in this study were as follow : (1) As for the nitrogen contents in plant tissues, P. densiflora increased significantly in one-year-old stembranch and root tissues, and F. koreana increased significantly in leaf and root tissues, as the pH levels of acid rain decreased. (2) The available phosphate contents in root tissues of P. densiflora, and in leaf and root tissues of F. koreana were significantly decreased, as the pH levels of acid rain decreased. (3) $K_2O$, CaO and MgO contents in plant tissues were significantly decreased in the both species as the pH levels decreased. And the effects of acid rain on F. koreana were higher than those of P. densiflora. (4) Sulfur contents of plant tissues in the both species were increased at pH 2.0 treatment. There were significant differences among three acid rain treatments in leaf and root tissues of P. densiflora, and in all parts of F. koreana. (5) In the effects of simulated acid rain on the both species and the tested soils, in general, F. koreana revealed higher sensitiveness than P. densiflora, and the lower pH levels of simulated acid rain were treated, the more sharp reaction was showed.

  • PDF

Effect of simulated Acid rain on Foliar Structural of Changes of Ginkgo biloba and Pinus thunbergii (은행나무와 곰솔에 처리된 인공산성비에 의한 잎의 형태변화)

  • 소웅영
    • Journal of Plant Biology
    • /
    • v.38 no.1
    • /
    • pp.79-86
    • /
    • 1995
  • Visible injury symptoms such as necrosis, chlorosis and premature senscence in the leaves of Ginkgo bloba and Pinus thunbergii treated with acid rain of pH 3.2 or below were observed. The epicuticular wax erosions were observed by SEM after exposure to acid rain of pH 2.4 and 3.2 in G. biloba and pH 4.0 below in P. thunbergii. The adaxial epidennal cells and sponge parenchyma cells were compressed, and those were distorted in the leaves of G. biloba treated with simulated acid rain of pH 3.2 or below. However, vascular tissue was intact. With increase of acidity, mesophyll cells were smaller than those of control while intercellular space in mesophyU was increased. In P. thunbergii, sponge parenchyma cells and vascular tissue except epidennis were distorted after exposure to acid rain of pH 2.4. The size change of stomata in foliar injury was not observed, but the stomatal index and size of stomatal aperture in leaves treated with acid rain increased. The stomata of injured leaf were opened in both species examined.amined.

  • PDF

Growth Responses of two Tree Species Exposed to Simulated Acidic Rain and Ozone (산성비와 오존에 대한 두 수종의 생장반응)

  • Lee, Woong-Sang
    • The Korean Journal of Ecology
    • /
    • v.17 no.2
    • /
    • pp.131-141
    • /
    • 1994
  • One-year-old yellow-poplar (Liriodendron tulipifera L.) and sweetgum (Liquidambar styraciflua L.) seedlings were exposed to 0.10 ${\mu}l/l\;O_3$and simulated acid rain at pH 3.0 for ten consecutive weeks. Shoot height growth (SHG), fresh weight (FWT), dry weight (DWT), apparent plastochron duration (APD) and foliar nutrient concentrations were measured. None of growth measurements, except the apparent plastochron duration (APD), were significantly affected by any treatment in yellow-poplar seedlings. APD was approximately 30% higher in seedlings exposed to $0.1{\mu}l/l\;O_3$ + pH 5.6 solution than any other treatment. Ozone significantly reduced SHG of sweetgum seedlings by 24% at the end of the ten-week fumigation. There were also significant effects of single and combined effects of ozone and simulated acid rain on APD in sweetgum. APD was significantly increased by 19.8% and 25.7% in seedlings exposed to $0.1{\mu}l/l\;O_3$ and pH 5.6 solution, respectively, and resulted in 46.1% higher APD in seedlings exposed to $0.1{\mu}l/l\;O_3$ + pH 5.6 solution compared with seedlings exposed to $0.0{\mu}l/l\;O_3$ + pH 3.0 solution. Phosphorus and sulphur were significantly greater in seedlings exposed to simulated rain at pH 3.0 compared with pH 5.6 for both species. Foliar S concentration was higher in seedlings exposed to $0.0{\mu}l/l\;O_3$ + pH 3.0 than in seedlings exposed to any other treatment in sweetgum. Ozone significantly increased Ca in sweetgum seedlings, however, ozone reduced Ca in yellow-poplar. Ozone also reduced S and Mg in sweetgum seedlings.

  • PDF

Effect of Acid Rain on Vegetation (산성(酸性)비가 식생(植生)에 미치는 영향(影響))

  • Lee, Jong-Sik;Kim, Bok-Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.3
    • /
    • pp.346-358
    • /
    • 1994
  • In this paper, the current knowledge on the formation of acid rain and its effect on vegetation are reviewed. The pollutants which were emitted into the air are oxidized by photochemical reaction and affect the vegetation by dry and wet deposition. Acid rain at pH 4.0 affected sensitive plants and when it was below pH 3.0, visible symptoms developed in most of the crops. The acid rain treatment at pH 2.0 decreased dry weight, leaf area and chlorophyll contents in soybean but it increased rate of photosynthesis and respiration rate. Rain treatment at pH 2.8 increased ethylene production, but it’s not a suitable indicator of sensitivity to acid rain. At pH 2.0 treatment, the contents of soluble Mn and Al were increased but the cultivated soil pH at upper layer(0-5cm) was significantly decreased. The pertubation of glandular trichome which is existed along the vein was developed at all treatment except the control(pH 6.0) and non-treatment. Histological pertubation of spiked trichome and disintegration of chloroplast were developed only on the leaves of sesame treated with SAR(simulated acid rain) of pH 2.0.

  • PDF

Deterioration of tensile behavior of concrete exposed to artificial acid rain environment

  • Fan, Y.F.;Hu, Z.Q.;Luan, H.Y.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.1
    • /
    • pp.41-56
    • /
    • 2012
  • This study is focused on evaluation of the tensile properties of concrete exposed to acid rain environment. Acid rain environment was simulated by the mixture of sulfate and nitric acid in the laboratory. The dumbell-shaped concrete specimens were submerged in pure water and acid solution for accelerated conditioning. Weighing, tensile test, CT, SEM/EDS test and microanalysis were performed on the specimens. Tensile characteristics of the damaged concrete are obtained quantitatively. Evolution characteristics of the voids, micro cracks, chemical compounds, elemental distribution and contents in the concrete are examined. The deterioration mechanisms of concrete exposed to acid rain are well elucidated.

A study of deterioration of reinforced concrete beams under various forms of simulated acid rain attack in the laboratory

  • Fan, Yingfang;Hu, Zhiqiang;Luan, Haiyang;Wang, Dawei;Chen, An
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.35-49
    • /
    • 2014
  • This paper studies the behaviour of deteriorated reinforced concrete (RC) beams attacked by various forms of simulated acid rain. An artificial rainfall simulator was firstly designed and evaluated. Eleven RC beams ($120mm{\times}200mm{\times}1800mm$) were then constructed in the laboratory. Among them, one was acting as a reference beam and the others were subjected to three accelerated corrosion methods, including immersion, wetting-drying, and artificial rainfall methods, to simulate the attack of real acid rain. Acid solutions with pH levels of 1.5 and 2.5 were considered. Next, ultrasonic, scanning electron microscopy (SEM), dynamic, and three-point bending tests were performed to investigate the mechanical properties of concrete and flexural behaviour of the RC beams. It can be concluded that the designed artificial simulator can be effectively used to simulate the real acid rainfall. Both the immersion and wetting-drying methods magnify the effects of the real acid rainfall on the RC beams.