• 제목/요약/키워드: simplified solution

검색결과 353건 처리시간 0.022초

IoT Connectivity Application for Smart Building based on Analysis and Prediction System

  • COROTINSCHI, Ghenadie;FRANCU, Catalin;ZAGAN, Ionel;GAITAN, Vasile Gheorghita
    • International Journal of Computer Science & Network Security
    • /
    • 제21권9호
    • /
    • pp.103-108
    • /
    • 2021
  • The emergence of new technologies and their implementation by different manufacturers of electronic devices are experiencing an ascending trend. Most of the time, these protocols are expected to reach a certain degree of maturity, and electronic equipment manufacturers use simplified communication standards and interfaces that have already reached maturity in terms of their development such as ModBUS, KNX or CAN. This paper proposes an IoT solution of the Smart Home type based on an Analysis and Prediction System. A data acquisition component was implemented and there was defined an algorithm for the analysis and prediction of actions based on the values collected from the data update component and the data logger records.

Bond-slip effect in steel-concrete composite flexural members: Part 1 - Simplified numerical model

  • Lee, WonHo;Kwak, Hyo-Gyoung;Hwang, Ju-young
    • Steel and Composite Structures
    • /
    • 제32권4호
    • /
    • pp.537-548
    • /
    • 2019
  • This paper introduces an improved numerical model which can consider the bond-slip effect in steel-concrete composite structures without taking double nodes to minimize the complexity in constructing a finite element model. On the basis of a linear partial interaction theory and the use of the bond link element, the slip behavior is defined and the equivalent modulus of elasticity and yield strength for steel is derived. A solution procedure to evaluate the slip behavior along the interface of the composite flexural members is also proposed. After constructing the transfer matrix relation at an element level, successive application of the constructed relation is conducted from the first element to the last element with the compatibility condition and equilibrium equations at each node. Finally, correlation studies between numerical results and experimental data are conducted with the objective of establishing the validity of the proposed numerical model.

The Effect of Slenderness on the Design of Diagrid Structures

  • Mele, Elena;Imbimbo, Maura;Tomei, Valentina
    • 국제초고층학회논문집
    • /
    • 제8권2호
    • /
    • pp.83-94
    • /
    • 2019
  • Diagrid structures have emerged in recent decades as an innovative solution for tube tall buildings, capable of merging structural efficiency and aesthetic quality. This paper investigates the effect of the building slenderness (grossly quantified by means of the aspect ratio, i.e., the ratio between the height and the plan dimension) on the structural behavior and on the optimal design parameters of diagrid tall buildings. For this purpose, building models with different slenderness values are designed by adopting preliminary design criteria, based on strength or stiffness demands; in addition, a design method based on a sizing optimization process that employs genetic algorithms is also proposed, with the aim to compare and/or refine the results obtained with simplified approaches.

Improving the Genetic Algorithm for Maximizing Groundwater Development During Seasonal Drought

  • Chang, Sun Woo;Kim, Jitae;Chung, Il-Moon;Lee, Jeong Eun
    • 지질공학
    • /
    • 제30권4호
    • /
    • pp.435-446
    • /
    • 2020
  • The use of groundwater in Korea has increased in recent years to the point where its extraction is restricted in times of drought. This work models the groundwater pumping field as a confined aquifer in a simplified simulation of groundwater flow. It proposes a genetic algorithm to maximize groundwater development using a conceptual model of a steady-state confined aquifer. Solving the groundwater flow equation numerically calculates the hydraulic head along the domain of the problem; the algorithm subsequently offers optimized pumping strategies. The algorithm proposed here is designed to improve a prior initial groundwater management model. The best solution is obtained after 200 iterations. The results compare the computing time for five simulation cases. This study shows that the proposed algorithm can facilitate better groundwater development compared with a basic genetic algorithm.

Deformation of the PDMS Membrane for a Liquid Lens Under Hydraulic Pressure

  • Gu, Haipeng;Gan, Zihao;Hong, Huajie;He, Keyan
    • Current Optics and Photonics
    • /
    • 제5권4호
    • /
    • pp.391-401
    • /
    • 2021
  • In the present study, a hyperelastic constitutive model is built by complying with a simplified hyperelastic strain energy function, which yields the numerical solution for a deformed polydimethylsiloxane (PDMS) membrane in the case of axisymmetric hydraulic pressure. Moreover, a nonlinear equilibrium model is deduced to accurately express the deformation of the membrane, laying a basis for precise analysis of the optical transfer function. Comparison to experimental and simulated data suggests that the model is capable of accurately characterizing the deformation behavior of the membrane. Furthermore, the stretch ratio derived from the model applies to the geometrical optimization of the deformed membrane.

Practical formula for determining peak acceleration of footbridge under walking considering human-structure interaction

  • Cao, Liang;Zhou, Hailei;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • 제83권6호
    • /
    • pp.729-744
    • /
    • 2022
  • In this paper, an analytical formulation is proposed to predict the vertical vibration response due to the pedestrian walking on a footbridge considering the human-structure interaction, where the footbridge and pedestrian are represented by the Euler beam and linear oscillator model, respectively. The derived coupled equation of motion is a nonlinear fourth-order partial differential equation. An uncoupled solution strategy based on the combined weighted residual and perturbation method) is proposed to reduce the tedious computation, which allows the separate integration between the bridge and pedestrian subsystems. The theoretical study demonstrates that the pedestrian subsystem can be treated as a structural system with added mass, damping, and stiffness. The analysis procedure is then applied to a case study under the conditions of single pedestrian and multi pedestrians, and the results are validated and compared numerically. For convenient vibration design of a footbridge, the simplified peak acceleration formula and the idea of decoupling problem are thus proposed.

이중 곡률 쉘 모양의 소프트 회전 액추에이터 변형에 대한 수식적 접근 (Analytical Approach to Deformation of a Soft Rotary Actuator with Double Curvature Shell Shape)

  • 이영민;최혁렬;구자춘
    • 로봇학회논문지
    • /
    • 제17권1호
    • /
    • pp.68-75
    • /
    • 2022
  • In this paper, we considered the deformation shape of the soft rotation actuator as a double curvature shell and proceeded with the analytical development. Since the response of the hyperelastic material has a large nonlinear deformation, the analytical approach is very complicated and the solution cannot be easily obtained. it is assumed that the behavior of the flexible body, which is a superelastic material, takes the form of a double curvature shell, and the formulas for calculating the deformation are simplified. In this process, equilibrium equations in the related coordinate system representing a double curvature shell were derived. In addition, assuming a thin shell, the stress component in the thickness direction was ignored, and the equation was developed by adding the assumption of free rotation without load. In order to verify the analytically calculated value in this way, an experiment was conducted and the results were compared.

단일 원형휜에서의 비등열전달에 관한 연구 (A Study on Boiling Heat Transfer from Circular Single Fin)

  • 서정일;임장순;이재헌;박만흥
    • 대한설비공학회지:설비저널
    • /
    • 제11권3호
    • /
    • pp.18-30
    • /
    • 1982
  • The heat transfer process with boiling on a fin cannot be treated in a conventional manner of assuming a constant heat transfer coefficient. This report proposes a simplified method for determining fin performance. The heat transfer coefficients in boiling region is approximated by n ty power function of superheat. The results yield the temperature gradient as a function of superheat, fin width, and thermal conductivity of the fin. Computed results for water boiling on fin compare favorably with those obtained from a small-increment numerical solution.

  • PDF

PROBLEMS AND SOLUTION OF IDENTIFICATION AND APPROVAL OF PRIVATELY FINANCED INFRASTRUCTURE PROJECTS IN CHINA

  • Xiangrong Du;Tsunemi Watanabe
    • 국제학술발표논문집
    • /
    • The 1th International Conference on Construction Engineering and Project Management
    • /
    • pp.731-736
    • /
    • 2005
  • The governmental attitude toward private investment and financing for infrastructure projects has changed from the initial prohibition to the current encouragement in China, which has been embodied in the legal documents and administrative process. However, the problem of identification, bidding, and approval procedure for privately financed infrastructure projects has been observed in policies and administrative measures promulgated by different or even the same government branches, which is prohibitive factors for smooth project implementation. After analysis of the identification, bidding, and approval process of infrastructure projects, the authors proposed a simplified and alternative procedure and clarified the key points of relevant project documents.

  • PDF

Analyses of on-the-fly generation of spectral superhomogenization factors for multigroup whole core calculation employing pin-wise slowing-down solutions

  • Seungug Jae;Han Gyu Joo
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1084-1096
    • /
    • 2023
  • On-the-fly(OTF) generation of Spectral Superhomogenization(SSPH) factors is analyzed in the multigroup(MG) whole core calculation employing pin-wise continuous energy(CE) slowing-down solutions. The motivation for the work is to avoid the huge computing time required for the generation of a parametrized SSPH factor library(PSSL) which is used to resolve the angular dependency of MG resonance cross sections, and also to exploit the advantage of flexible choice of a MG structure by using CE slowing-down solutions. Two pin-wise CE slowing-down methods, the equivalent Dancoff cell method and the shadowing effect correction method, are evaluated with the OTF SSPH method. The effectiveness of the OTF SSPH method is examined for various simplified and realistic core problems with various MG structures. It is demonstrated that the computing time overhead of this method is negligible whereas the solution accuracy is considerably enhanced.