• Title/Summary/Keyword: simplified model

Search Result 2,212, Processing Time 0.029 seconds

Simplified Reaction Scheme of Hydrocarbon Fuels and Its Application to Autoignition of n-Heptane (탄화수소계 연료의 축소반응모텔과 노말-헵탄(n-Heptane)의 자발화 현상)

  • 여진구
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.76-83
    • /
    • 2002
  • Mathematically and chemically simplified reaction scheme for n(heptane that simulates autoignitions of the end gases in spark ignition engines has been developed and studied computationally. The five(equation model is described, to predict the essential features of hydrocarbon oxidation. This scheme has been calibrated against autoignition delay times measured in rapid compression machines. The rate constants, activation temperatures, Ta, Arrhenius pre-exponential constants, A, and heats of reaction for stoichiometric nheptane/air has all been optimized. Comparisons between computed and experimental autoignition delay times have validated the present simplified reaction scheme. The influences of heat loss and concentration of chain carrier at the beginning of compression upon autoignition delay times have been computationally investigated.

Simplification of the Plant Models in PSA

  • Kim, Myung-Ro;Lee, Beom-Su;Kang, Sun-Koo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.499-504
    • /
    • 1996
  • Current Probabilistic Safety Assessment (PSA) techniques are not usually utilized for day-to-day applications in nuclear power plants. The major reason for this anomaly is the complexity of plant models developed for PSA studies and the multitude of resulting fault trees. This impediment can be overcome by the use of simplified plant models. However, oversimplified models usually result in loss of valuable information and therefore. simplification approaches have to be used judiciously in order to achieve accurate and meaningful results. For this reason. development of an appropriate simplification approach must be performed using extreme caution followed with results verification in sequence as well as system levels. If there are no significant differences between the simplified and the original models, the simplified model can be efficiently used in the application of the PSA. This paper presents a methodology for how to develop a suitable simplification technique and the results of its verification for sample systems and sequences. The results show that the utilization of simplified plant models will significantly reduce the number of fault trees with no significant loss of accuracy.

  • PDF

Simplified Reaction Scheme of Hydrocarbon Fuels and Its Application to Autoignition of Gasoline with Different Octane Numbers (탄화수소계 연료의 축소반응모델과 가솔린연료의 옥탄가 변화에 따른 자발화 지연시간)

  • 여진구
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.13-19
    • /
    • 2003
  • Mathematically simplified reaction scheme that simulates autoignitions of the end gases in spark ignition engines has been studied computationally. The five equation model is described, to predict the essential features of hydrocarbon oxidation. This scheme has been calibrated against autoignition delay times measured in rapid compression machines. The rate constants, activation temperatures, Ta, Arrhenius preexponential constants, A, and heats of reaction for stoichiometric n-heptane/air, iso-octane/air, and their mixtures have all been optimised. The optimisation has been guided by Morley's correlation of the ratio of chain branching to linear termination rates with octane number. Comparisons between computed and experimental autoignition delay times have validated the Present simplified reaction scheme and the influences of octane number upon autoignition delay times have been computationally investigated. It has been found that both cool flame and high temperature direct reactions can have an effect on autoignition delay times.

Analytical Estimation of the Propulsive Performance of Pulse Detonation Engines

  • Endo, Takuma;Yatsufusa, Tomaaki;Taki, Shiro;Kasahara, Jiro;Matsuo, Akiko;Inaba, Kazuaki;Sato, Shigeru
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.506-512
    • /
    • 2004
  • We analytically estimated the propulsive performance of pulse detonation engines (PDEs) in three cases, which were (1) a fully-fueled simplified PDE, (2) a partially-fueled simplified PDE, and (3) a PDE optimized as a system. The results of the model analyses in the cases of (1) and (2) were in good agreement with published experimental data which were obtained by using simplified PDEs. The comparison between the results of the analyses of simplified PDEs and those of optimized PDE systems showed that specific impulse would become higher by about 10-20% due to PDE-system optimization.

  • PDF

Dynamics Modeling and Control of a Delta High-speed Parallel Robot (Delta 고속 병렬로봇의 동역학 모델링 및 제어)

  • Kim, Han Sung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.90-97
    • /
    • 2014
  • This paper presents a simplified dynamics model, dynamics simulations, and computed torque control experiments of the Delta high-speed parallel robot. Using the typical Newton-Euler method, a simplified but accurate dynamics model with practical assumptions is derived. Accuracy and fast calculations of the dynamics are essential in the computed torque control for high-speed applications. It was found that the simplified dynamics equation is in very god agreement with the ADAMS model, and the calculation time of the inverse kinematics and inverse dynamics is about 0.04 msec. From the dynamics simulations, the cycle trajectory along the y-axis requires less peak motor torque and a lower angular velocity and less power than that along the x-axis. The computed torque control scheme can reduce the position error by half as compared to a PD control scheme. Finally, the developed Delta parallel robot prototype, half the size of the ABB Flexpicker robot, can achieve a cycle time of 0.43 sec with a 1.0kg payload.

Simulation of Active Compensated Pulsed Alternator with a Laser Flashlamp Load Based on Simplified Model

  • Yuan, Pei;Yu, Kexun;Ye, Caiyong;Ren, Zhang'ao
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.434-439
    • /
    • 2012
  • This paper presents a nontraditional laser power system in which an active compensated pulsed alternator (ACPA) drives a flashlamp directly without the use of capacitor groups. As a result, the volume of the laser system is decreased because of the high energy density of the ACPA. However, the difficulty in matching the output of the alternator with the laser flashlamp is a significant issue and needs to be well analyzed. In order to solve this problem, based on the theory for ACPA, the authors propose a simplified model for the system of ACPA with flashlamp load by the way of circuit simulation. The simulation results preliminarily illuminate how the performance of the ACPA laser power system is affected. Meanwhile, the simulation results can also supply a consultation for future ACPA laser power system design and control.

Simplified Load Calculation and Structural Test for Scale Down Model of Small Wind Turbine Blade according to IEC 61400-2 (IEC 61400-2에 의거한 소형 풍력발전용 블레이드 축소모델의 단순 하중 계산 및 구조 시험)

  • Jang, Yun-Jung;Kang, Ki-Weon
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.3
    • /
    • pp.1-5
    • /
    • 2013
  • This study deals with simplified load calculation and structural testing for scale down model of small wind turbine blade. First, the blade was designed and produced scale down to 0.2 ratio of initial blade. And moments were acquired by simplified load calculation equations according to IEC 61400-2 standard. Also, structural test using weight was conducted to obtain the maximum moment. Therefore maximum moments were compared at calculation and test.

Optimal design of spoke double-layer cable-net structures based on an energy principle

  • Ding, Mingmin;Luo, Bin;Han, Lifeng;Shi, Qianhao;Guo, Zhengxing
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.533-545
    • /
    • 2020
  • An optimal design method for a spoke double-layer cable-net structure (SDLC) is proposed in this study. Simplified calculation models of the SDLC are put forward to reveal the static responses under vertical loads and wind loads. Next, based on an energy principle, the relationship among the initial prestress level, cross-sectional areas of the components, rise height, sag height, overall displacement, and relative deformation is proposed. Moreover, a calculation model of the Foshan Center SDLC is built and optimized. Given the limited loading cases, material properties of the components, and variation ranges of the rise height and sag height, the self-weight and initial prestress level of the entire structure can be obtained. Because the self-weight of the cables decreases with increasing of the rise height and sag height, while the self-weight of the inner strut increases, the total weight of the entire structure successively exhibits a sharp reduction, a gradual decrease, a slow increase, and a sharp increase during the optimization process. For the simplified model, the optimal design corresponds to the combination of rise height and sag height that results in an appropriate prestress level of the entire structure with the minimum total weight.

Simplified Analytical Model for a Steel Frame with Double Angle Connections (더블앵글 접합부를 사용한 철골조의 단순해석 모델)

  • Yang, Jae-Guen;Lee, Gil-Young;Park, Jeong-Suk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.1 s.19
    • /
    • pp.45-54
    • /
    • 2006
  • A steel frame is one of the most commonly used structural systems due to its resistance to various types of applied loads. Many studies have been conducted to investigate the effects of connection flexibility, support conditions, and beam-to-column stiffness ratio on the story drift of a frame. Based on the results of these studies, several design guides have been proposed. This research has been conducted to predict the actual behavior of a double angle connection, and to establish its effect on the story drift and the maximum allowable load of a steel frame. For these purposes, several experimental tests were conducted and a simplified analytical model was proposed. This simplified analytical model consists of four spring elements as well as a column member. In addition, a point bracing system was proposed to control the excessive story drift of an unbraced steel frame.

  • PDF

Behavior and simplified analysis of steel-concrete composite beams subjected to localized blast loading

  • Li, Guo-Qiang;Yang, Tao-Chun;Chen, Su-Wen
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.337-350
    • /
    • 2009
  • Finite element simulations are increasingly used in structural analysis and design, especially in cases where complex structural and loading conditions are involved. Due to considerable progresses in computer technology as well as nonlinear finite-element analysis techniques in past years, it has become possible to pursue an accurate analysis of the complex blast-induced structural effects by means of numerical simulations. This paper aims to develop a better understanding of the behavior of steel-concrete composite beams (SCCB) under localized blast loading through a numerical parametric study. A finite element model is set up to simulate the blast-resistant features of SCCB using the transient dynamic analysis software LS-DYNA. It is demonstrated that there are three dominant failure modes for SCCB subjected to localized blast loading. The effect of loading position on the behavior of SCCB is also investigated. Finally, a simplified model is proposed for assessing the overall response of SCCB subjected to localized blast loading.