• Title/Summary/Keyword: simplified calculation model

Search Result 154, Processing Time 0.028 seconds

Development of a Simplified Statistical Methodology for Nuclear Fuel Rod Internal Pressure Calculation

  • Kim, Kyu-Tae;Kim, Oh-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.257-266
    • /
    • 1999
  • A simplified statistical methodology is developed in order to both reduce over-conservatism of deterministic methodologies employed for PWR fuel rod internal pressure (RIP) calculation and simplify the complicated calculation procedure of the widely used statistical methodology which employs the response surface method and Monte Carlo simulation. The simplified statistical methodology employs the system moment method with a deterministic approach in determining the maximum variance of RIP The maximum RIP variance is determined with the square sum of each maximum value of a mean RIP value times a RIP sensitivity factor for all input variables considered. This approach makes this simplified statistical methodology much more efficient in the routine reload core design analysis since it eliminates the numerous calculations required for the power history-dependent RIP variance determination. This simplified statistical methodology is shown to be more conservative in generating RIP distribution than the widely used statistical methodology. Comparison of the significances of each input variable to RIP indicates that fission gas release model is the most significant input variable.

  • PDF

Simplified Load Calculation and Structural Test for Scale Down Model of Small Wind Turbine Blade according to IEC 61400-2 (IEC 61400-2에 의거한 소형 풍력발전용 블레이드 축소모델의 단순 하중 계산 및 구조 시험)

  • Jang, Yun-Jung;Kang, Ki-Weon
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.3
    • /
    • pp.1-5
    • /
    • 2013
  • This study deals with simplified load calculation and structural testing for scale down model of small wind turbine blade. First, the blade was designed and produced scale down to 0.2 ratio of initial blade. And moments were acquired by simplified load calculation equations according to IEC 61400-2 standard. Also, structural test using weight was conducted to obtain the maximum moment. Therefore maximum moments were compared at calculation and test.

Verification of SARAX code system in the reactor core transient calculation based on the simplified EBR-II benchmark

  • Jia, Xiaoqian;Zheng, Youqi;Du, Xianna;Wang, Yongping;Chen, Jianda
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1813-1824
    • /
    • 2022
  • This paper shows the verification work of SARAX code system in the reactor core transient calculation based on the simplified EBR-II Benchmark. The SARAX code system is an analysis package developed by Xi'an Jiaotong University and aims at the advanced reactor R&D. In this work, a neutron-photon coupled power calculation model and a spatial-dependent reactivity feedback model were introduced. To verify the models used in SARAX, the EBR-II SHRT-45R test was simplified to an ULOF transient with an input flowrate change curve by fitting from reference. With the neutron-photon coupled power calculation model, SARAX gave close results in both power fraction and peak power prediction to the reference results. The location of the hottest assembly from SARAX and reference are the same and the relative power deviation of the hottest assembly is 2.6%. As for transient analysis, compared with experimental results and other calculated results, SARAX presents coincident results both in trend and absolute value. The minimum value of core net reactivity during the transient agreed well with the reported results, which ranged from -0.3$ to -0.35$. The results verify the models in SARAX, which are correct and able to simulate the in-core transient with reliable accuracy.

Optimal design of spoke double-layer cable-net structures based on an energy principle

  • Ding, Mingmin;Luo, Bin;Han, Lifeng;Shi, Qianhao;Guo, Zhengxing
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.533-545
    • /
    • 2020
  • An optimal design method for a spoke double-layer cable-net structure (SDLC) is proposed in this study. Simplified calculation models of the SDLC are put forward to reveal the static responses under vertical loads and wind loads. Next, based on an energy principle, the relationship among the initial prestress level, cross-sectional areas of the components, rise height, sag height, overall displacement, and relative deformation is proposed. Moreover, a calculation model of the Foshan Center SDLC is built and optimized. Given the limited loading cases, material properties of the components, and variation ranges of the rise height and sag height, the self-weight and initial prestress level of the entire structure can be obtained. Because the self-weight of the cables decreases with increasing of the rise height and sag height, while the self-weight of the inner strut increases, the total weight of the entire structure successively exhibits a sharp reduction, a gradual decrease, a slow increase, and a sharp increase during the optimization process. For the simplified model, the optimal design corresponds to the combination of rise height and sag height that results in an appropriate prestress level of the entire structure with the minimum total weight.

Simplified 3D Finite Element Analysis of Linear Inductor Motor for Integrated Magnetic Suspension/Propulsion Applications (자기부상 및 추진 일체형 리니어 인덕터 모터의 간이형 3차원 유한요소해석)

  • Jeong, Sang-Sub;Jang, Seok-Myeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.6
    • /
    • pp.371-379
    • /
    • 2000
  • The 4-pole linear homopolar synchronous motor (LHSM), so called linear inductor motor, is composed of the figure-of-eight shaped 3-phase armature windings, DC field windings, and the segmented secondary with the transverse bar track. To reduce the calculation time, the simplified 3D finite element model with equivalent reluctance and/or permanent magnet is presented. To obtain a clear understanding, propriety and usefulness of the developed model, we compare with the results of simplified 3D FEA, general 3D FEA and test. Consequently, the results of simplified and 3D FEM analysis are nearly identical, but much larger than that of static test at d-axis armature excitation. Therefore the improved FEA model, such as full model with half slot, is needed for the precise analysis.

  • PDF

A Study of Simplified Calculation Methods for Outside Vertical Illuminance using VBA (VBA(Visual Basic for Applications)를 활용한 실외 수직면 조도 간이계산법에 관한 연구)

  • Yun, Su-In;Kim, Kang-Soo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.12
    • /
    • pp.65-72
    • /
    • 2018
  • The purpose of this study is to predict vertical illuminance accurately at the design stage of a building without the help of simulation tools. Comparing two well-known vertical illuminance prediction algorithms with measured values, it is verified that the Igawa model is more consistent with the measured values than the Perez model. Using the DIVA program, we simulated the vertical illuminance at 30-degree intervals from south to north, compared with the vertical illuminance calculated with the Igawa model. The result of calculation values were verified from 120 degrees east to 120 degrees west. The vertical illuminance values with each of three shade devices were calculated using the Igawa model, and compared with the vertical illuminance simulated by DIVA program. As a result, all the errors when installing horizontal / vertical / grid shade divices were included in the error standard specified by ASHRAE.

Fire design of concrete encased columns: Validation of an advanced calculation model

  • Zaharia, R.;Dubina, D.
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.835-850
    • /
    • 2014
  • The fire resistance of composite steel and concrete structures may be determined by using the simplified methods provided in EN 1994-1-2. For the particular situations not covered by the standard, an advanced calculation model might be applied, using special purpose programs for the analysis of structures in fire. The validation of these programs has always been an important issue for software developers, but also for designers and authorities. Clause 4.4.4 from EN 1994-1-2 refers to the validation of the advanced calculation models and states that these models must be validated through relevant test results. The paper presents the calculation of fire resistance of the composite columns in a high-rise building built in Romania, and focusses on the validation of the calculation model (computer program SAFIR), for this particular case. This validation, asked by the Romanian authorities, considers the available experimental results of a fire test, performed on a similar composite steel-concrete column.

Simplified Resistor Network Calculation for Electrical and Mass Transport in Anode-Supported Planar Solid Oxide Fuel Cell (연료극지지 평판형 고체산화물 연료전지 내에서의 전기 및 물질전달에 대한 간략화된 저항 네트워크 계산)

  • Lee, Hyun-Jae;Nam, Jin-Hyun;Kim, Charn-Jung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1740-1745
    • /
    • 2004
  • A simplified resistor network model for electrical and mass transport in anode-supported planar solid oxide fuel cell (SOFC) was constructed in order to investigate the effect of interconnect rib geometry on the cell performance. For accurate potential calculation, activation and concentration over-potentials at the electrode/electrolyte interfaces were fully considered in this calculation. When contact resistance was not considered, the optimum interconnect rib length were calculated to be $0.1{\sim}0.2$ mm for 2 mm half unit cell for given operation conditions and properties. However, with realistic contact resistance, the interconnect rib length should be increased to provide larger contact area and thus to obtain better performance.

  • PDF

Development of a Simplified Fuel-Cladding Gap Conductance Model for Nuclear Feedback Calculation in 16$\times$16 FA

  • Yoo, Jong-Sung;Park, Chan-Oh;Park, Yong-Soo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.636-643
    • /
    • 1995
  • The accurate determination of the fuel-cladding gap conductance as functions of rod burnup and power level may be a key to the design and safety analysis of a reactor. The incorporation of a sophisticated gap conductance model into nuclear design code for computing thermal hydraulic feedback effect has not been implemented mainly because of computational inefficiency due to complicated behavior of gap conductance. To avoid the time-consuming iteration scheme, simplification of the gap conductance model is done for the current design model. The simplified model considers only the heat conductance contribution to the gap conductance. The simplification is made possible by direct consideration of the gas conductivity depending on the composition of constituent gases in the gap and the fuel-cladding gap size from computer simulation of representative power histories. The simplified gap conductance model is applied to the various fuel power histories and the predicted gap conductances are found to agree well with the results of the design model.

  • PDF

Analysis of The Behavior of Kurtosis By Simplified Model of One Sided Affiliated Impact Vibration

  • Takeyasu, Kazuhiro;Higuchi, Yuki
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.2
    • /
    • pp.192-197
    • /
    • 2005
  • Among many amplitude parameters, Kurtosis (4-th normalized moment of probability density function) is recognized to be the sensitive good parameter for machine diagnosis. Kurtosis has a value of 3.0 under normal condition and the value generally goes up as the deterioration proceeds. In this paper, simplified calculation method of kurtosis is introduced for the analysis of impact vibration with one sided affiliated impact vibration which occurs towards the progress of time. That phenomenon is often watched in the failure of such as bearings’ outer race. One sided affiliated impact vibration is approximated by one sided triangle towards the progress of time and simplified calculation method is introduced. Varying the shape of one sided triangle, various models are examined and it is proved that new index is a sensitive good index for machine failure diagnosis. Utilizing this method, the behavior of kurtosis is forecasted and analyzed while watching machine condition and correct diagnosis is executed.