• Title/Summary/Keyword: simplified analytical model

Search Result 195, Processing Time 0.024 seconds

2-D Axisymmetric Non-linear Finite Strain Consolidation Model Considering Self-weight Consolidation of Dredged Soil (준설매립지반의 자중압밀을 고려한 2차원 축대칭 비선형 유한변형 압밀 모델)

  • Kwak, Tae-Hoon;Lee, Dong-Seop;Lim, Jee-Hee;Stark, T.D.;Choi, Eun-Seok;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.8
    • /
    • pp.5-19
    • /
    • 2012
  • Vertical drains along with the preloading technique have been commonly used to enhance the consolidation rate of dredged placement formation. In practice, vertical drains are usually installed in the process of self-weight consolidation of a dredged soil deposit because this process takes considerable time to be completed, which makes conventional analytical or numerical models difficult to quantify the consolidation behavior. In this paper, we propose a governing partial differential equation and develop a numerical model for 2-D axisymmetric non-linear finite strain consolidation considering self-weight consolidation to predict the behavior of a vertical drain in the dredged placement foundation which is installed during the self-weight consolidation. In order to verify the developed model in this paper, results of the numerical analysis are compared with that of the lab-scaled self-weight consolidation test. In addition, the model verification has been carried out by comparing with the simplified method. The comparisons show that the developed model can properly simulate the consolidation of the dredged placement formation with the vertical drains installed during the self-weight consolidation. Finally, the effect of construction schedule of vertical drains and of pre-loading during the self-weight consolidation is examined by simulating an imaginary dredged material placement site with a thickness of 10 m and 20 m, respectively. This simulation infers the applicability of the proposed method in this research for designing a soil improvement in a soft dredged deposit when vertical drains and pre-loading are implemented before the self-weight consolidation ceases.

Application technique on thrust jacking pressure of shield TBM in the sharp curved tunnel alignment by model tests (축소모형실험을 통한 급곡선 터널에서의 Shield TBM 추진 압력 적용 기술에 대한 연구)

  • Kang, Si-on;Kim, Hyeob;Kim, Yong-Min;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.335-353
    • /
    • 2017
  • This paper presents the application technique on thrust jacking pressuring of shield TBM in the sharp curved tunnel alignment by model tests. Recently, the application of shield TBM method as mechanized tunnelling is increasing to prevent the vibration and noise problems, which can be occurred in the NATM in the urban area in Korea. However, it is necessary to plan the sharp curved tunnel alignment in order to avoid the building foundation and underground structures, to develop the shield TBM operation technique in the shape curved tunnel alignment. Therefore, the main operation parameters of shield TBM in the curved tunnel alignment are reviewed and analyzed based on the case study and analytical study. The results show that the operation of shield jacking force system is the most important technique in the shape curved tunnel alignment. The simplified scaled model tests are also carried out in order to examine the ground-shield TBM head behaviour. The earth pressures acting on the head of shield TBM are investigated according to two different shield jacking force systems (uniform and un-uniform pressure) and several articulation angles. The results obtained from the model tests are analysed. These results will be very useful to understand the shield TBM head interaction behaviour due to the shield jacking operation technique in the shape curved tunnel alignment, and to develop the operation technique.

The Evaluation Model for Interior Design Organizational Technology Integration: The quality of the design aid and economic evidence and factors

  • Choi, Seung-Pok
    • International Journal of Contents
    • /
    • v.8 no.2
    • /
    • pp.67-74
    • /
    • 2012
  • Technological substitution is the process by which a radical technology replaces the dominant technology in an industry. The processes of diffusion and substitution have been modeled extensively (Technology & innovation, 2010). However, the formulation of classical quantitative models encompasses only part of the theoretical space. These models impose many simplified constraints to the achievement of analytical resolution. The interior design organization needs to establish a set of technical system requirements by describing the scope of the accessibility needs of the organization against current technology use. Because of complicated design resources and ongoing advances in design technologies, design systems face the challenge of prioritizing new technologies for supporting. The problem is small design organization administration often displays a lack of concern toward the evaluation of technology integration. In this paper, I will identify the influence of a design organization's technology, and predict how future technology will inform, support, and potentially hinder productivity, culture, and work satisfaction within a design organization in the industry. In addition, I will use current design organizational behavior and leadership models to support my predictions. Finally, I will examine a proven approach to assist designers with evaluating technology integration in interior design organization. The goal is to develop a high quality, professional development scorecards for the evaluation. I will conduct both the evaluation of technology integration and CRM performance evaluation is recommended to assess the effectiveness of technology integration. Therefore, the evaluation of integration technologies oriented design hold the promise of solving the organization application integration challenge. The evaluation of integration technology is a significant pattern for processing such a vision. The careful selection of an integration technology for this purpose is crucial in contributing toward the success of such an interior design organization endeavor.

Development of a Probabilistic Safety Assessment Framework for an Interim Dry Storage Facility Subjected to an Aircraft Crash Using Best-Estimate Structural Analysis

  • Almomani, Belal;Jang, Dongchan;Lee, Sanghoon;Kang, Hyun Gook
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.411-425
    • /
    • 2017
  • Using a probabilistic safety assessment, a risk evaluation framework for an aircraft crash into an interim spent fuel storage facility is presented. Damage evaluation of a detailed generic cask model in a simplified building structure under an aircraft impact is discussed through a numerical structural analysis and an analytical fragility assessment. Sequences of the impact scenario are shown in a developed event tree, with uncertainties considered in the impact analysis and failure probabilities calculated. To evaluate the influence of parameters relevant to design safety, risks are estimated for three specification levels of cask and storage facility structures. The proposed assessment procedure includes the determination of the loading parameters, reference impact scenario, structural response analyses of facility walls, cask containment, and fuel assemblies, and a radiological consequence analysis with dose-risk estimation. The risk results for the proposed scenario in this study are expected to be small relative to those of design basis accidents for best-estimated conservative values. The importance of this framework is seen in its flexibility to evaluate the capability of the facility to withstand an aircraft impact and in its ability to anticipate potential realistic risks; the framework also provides insight into epistemic uncertainty in the available data and into the sensitivity of the design parameters for future research.

Point Bracing System for a Steel Frame with Double Angle Connections Under Horizontal and Vertical Loads (수평·수직하중을 동시에 받는 더블앵글로 접합된 철골조의 절점 보강시스템)

  • Yang, Jae Guen;Kim, Ho Keun;Kim, Ki Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.629-639
    • /
    • 2004
  • A steel frame is one of the most commonly used structural systems due to its resistance to various types of applied loads. Many studies have been conducted to investigate the effects of several parameters, such as connection flexibility, the boundary condition of each support, and beam-to-column stiffness ratio, on the characteristic behavior of a frame. Based on the results of these studies, several design methods have been proposed. This research focused on the number of bolts on the rotational stiffness of a double-angle connection, and its effect on the story drift of a frame. To achieve these purposes, a simplified analytical model was proposed. Several experimental tests were also conducted to obtain the rotational connection stiffness of each double-angle connection.

Cyclic Seismic Testing of Steel Moment Connections Reinforced with Welded Straight Haunch (용접 수평헌치로 보강된 철골 모멘트 접합부의 반복재하 내진실험)

  • 이철호;권근배;정종현;오명호;구은숙
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.31-37
    • /
    • 2002
  • Recently a simplified design procedure as well as load transfer model for seismic steel moment connections with welded straight haunch have been proposed by Lee and Uang. Cyclic seismic testing was conducted to verify the proposed design procedure and to develop the details that will prevent the cracking at the haunch tip, where stress concentration was the highest. All the specimens thus designed effectively pushed plastic hinging away from the haunch tip and were able to develop satisfactory plastic rotation capacity of 0.04 radian with no fracture. A sloped edge combined with drilling a hole near the haunch tip or a pair of stiffeners(partially or fully) extended from the beam web successfully prevented the crack initiation at the haunch tip. The strut action of the haunch web, which had been predicted from the previous analytical study, was also experimentally identified through the strain gage readings.

Earthquake Response Analysis of a RC Bridge Including the Effect of Repair/retrofitting (보수/보강 효과를 고려한 철근콘크리트교량의 내진응답해석)

  • Lee, Do Hyung;Cho, Kyu Sang;Jeon, Jeong Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.611-622
    • /
    • 2008
  • Nonlinear analyses have been carried out for both bridge piers and a bridge structure being repaired using a repair element in order to assess the post-repair seismic response of such structures. For this purpose, a simplified CFRP stress-strain model has been proposed. The analytical predictions incorporating the current developments correlate reasonably well with experimental results in terms of strength and stiffness. In addition, nonlinear dynamaic analyses have also been conducted for a bridge structure in terms of the created multiple earthquake sets to evaluate the effect of pier repair on the response of a whole bridge structure. In these analyses, potential plastic hinge zones of piers are virtually repaired by CFRP and steel jacketing. Comparative results prove the virtual necessity of performing nonlinear post-repair analyses under multiple earthquakes, particularly when the post-repair response features are required. In all, the present approaches are expected to provide salient information regarding a healthy seismic repair intervention of a damaged strcuture.

Dimensional synthesis of an Inspection Robot for SG tube-sheet

  • Kuan Zhang;Jizhuang Fan;Tian Xu;Yubin Liu;Zhenming Xing;Biying Xu;Jie Zhao
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2718-2731
    • /
    • 2024
  • To ensure the operational safety of nuclear power plants, we present a Quadruped Inspection Robot that can be used for many types of steam generators. Since the Inspection Robot relies on the Holding Modules to grip the tube-sheet, it can be regarded as a hybrid robot with variable configurations, switching between 4-RRR-RR, 3-RRR-RR, and two types of 2-RRR-RR, and the variable configurations bring a great challenge to dimensional synthesis. In this paper, the kinematic model of the Inspection Robot in multiple configurations is established, and the analytical solution is given. The workspace mapping is analyzed by the solution-space, and the workspace of multiple configurations is decomposed into the workspace of 2-RRR to reduce the analysis complexity, and the workspace calculation is simplified by using the envelope rings. The optimization problem of the manipulator is transformed into the calculation of the shortest contraction length of the swing leg. The switching performance of the Inspection Robot is evaluated by stride-length, turning-angle, and workspace overlap-ratio. The performance indexes are classified and transformed based on the proportions and variation trends of dimensional parameters to reduce the number of optimization objective functions, and Pareto optimal solutions are obtained using an intelligent optimization algorithm.

Macroeconomic Consequences of Pay-as-you-go Public Pension System (부과방식 공적연금의 거시경제적 영향)

  • Park, Chang-Gyun;Hur, Seok-Kyun
    • KDI Journal of Economic Policy
    • /
    • v.30 no.2
    • /
    • pp.225-270
    • /
    • 2008
  • We analyze macroeconomic consequences of pay-as-you-go (PAYGO) public pension system with a simple overlapping generations model. Contrary to large body of existing literatures offering quantitative results based on simulation study, we take another route by adopting a highly simplified framework in search of qualitatively tractable analytical results. The main contribution of our results lies in providing a sound theoretical foundation that can be utilized in interpreting various quantitative results offered by simulation studies of large scale general equilibrium models. We present a simple overlapping generations model with a defined benefit(DB) PAYGO public pension system as a benchmark case and derive an analytical equilibrium solution utilizing graphical illustration. We also discuss the modifications of the benchmark model required to encompass a defined contribution(DC) public pension system into the basic framework. Comparative statics analysis provides three important implications; First, introduction and expansion of the PAYGO public pension, DB or DC, result in lower level of capital accumulation and higher expected rate of return on the risky asset. Second, it is shown that the progress of population aging is accompanied by lower capital stock due to decrease in both demand and supply of risky asset. Moreover, risk premium for risky asset increases(decreases) as the speed of population aging accelerates(decelerates) so that the possibility of so-called "the great meltdown" of asset market cannot be excluded although the odds are not high. Third, it is most likely that the switch from DB PAYGO to DC PAYGO would result in lower capital stock and higher expected return on the risky asset mainly due to the fact that the young generation regards DC PAYGO pension as another risky asset competing against the risky asset traded in the market. This theoretical prediction coincides with one of the firmly established propositions in empirical literature that the currently dominant form of public pension system has the tendency to crowd out private capital accumulation.

  • PDF

Design Approach for Boundary Element of Flexure-Governed RC Slender Shear Walls Based on Displacement Ductility Ratio (휨 항복형 철근콘크리트 전단벽의 경계요소설계를 위한 변위연성비 모델제시)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.687-694
    • /
    • 2014
  • This study established a displacement ductility ratio model for ductile design for the boundary element of shear walls. To determine the curvature distribution along the member length and displacement at the free end of the member, the distributions of strains and internal forces along the shear wall section depth were idealized based on the Bernoulli's principle, strain compatibility condition, and equilibrium condition of forces. The confinement effect at the boundary element, provided by transverse reinforcement, was calculated using the stress-strain relationship of confined concrete proposed by Razvi and Saatcioglu. The curvatures corresponding to the initial yielding moment and 80% of the ultimate state after the peak strength were then conversed into displacement values based on the concept of equivalent hinge length. The derived displacement ductility ratio model was simplified by the regression approach using the comprehensive analytical data obtained from the parametric study. The proposed model is in good agreement with test results, indicating that the mean and standard deviation of the ratios between predictions and experiments are 1.05 and 0.19, respectively. Overall, the proposed model is expected to be available for determining the transverse reinforcement ratio at the boundary element for a targeted displacement ductility ratio.