• Title/Summary/Keyword: simplex downhill optimization method

Search Result 10, Processing Time 0.024 seconds

A Low Complicate Reverse Rake Beamforming Algorithm Based On Simplex Downhill Optimization Method For DS/CDMA Communication (Simplex Downhill 최적화 기법을 기반으로 하는 간략화 된 DS/CDMA 역방향 링크 Rake Beamforming Method)

  • Lee Sang-Keun;Lee Yoon-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.249-253
    • /
    • 2006
  • We propose a new beamforming algorithm, which is based on simplex downhill optimization method in the presence of pilot channels in cdma2000 reverse-link, for the rake structure antenna array in DS/CDMA communication system. Our approach uses the desired signal(pilot) covariance matrix and the interference covariance matrix. The beamforming weights are made according to maximum SINR criteria using simplex downhill optimization procedure. Our proposed scheme provides lower computational load, better convergence speed, better performance than existingadaptive beamforming algorithm. The simplex downhill method is well suited to finding the optimal or sub-optimal weight vector, since they require only the value of the deterministic function to be optimized. The rake beamformer performances are also evaluated under several set of practical parameter values with regard to spatial channel model. We also compare the performance between conventional rake receiver and the proposed one under same receiving power.

Comparison of Automatic Calibration for a Tank Model with Optimization Methods and Objective Functions

  • Kang, Min-Goo;Park, Seung-Woo;Park, Chang-Eun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.7
    • /
    • pp.1-13
    • /
    • 2002
  • Two global optimization methods, the SCE-UA method and the Annealing-simplex (A-S) method for calibrating a daily rainfall-runoff model, a Tank model, was compared with that of the Downhill Simplex method. The performance of the four objective functions, DRMS (daily root mean square), HMLE (heteroscedastic maximum likelihood estimator), ABSERR (mean absolute error), and NS (Nash-Sutcliffe measure), was tested and synthetic data and historical data were used. In synthetic data study. 100% success rates for all objective functions were obtained from the A-S method, and the SCE-UA method was also consistently able to obtain good estimates. The downhill simplex method was unable to escape from local optimum, the worst among the methods, and converged to the true values only when the initial guess was close to the true values. In the historical data study, the A-S method and the SCE-UA method showed consistently good results regardless of objective function. An objective function was developed with combination of DRMS and NS, which putted more weight on the low flows.

Parameter Calibrations of a Daily Rainfall-Runoff Model Using Global Optimization Methods (전역최적화 기법을 이용한 강우-유출모형의 매개변수 자동보정)

  • Kang, Min-Goo;Park, Seung-Woo;Im, Sang-Jun;Kim, Hyun-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.5
    • /
    • pp.541-552
    • /
    • 2002
  • Two global optimization methods, the SCE-UA method and the Annealing-Simplex(A-S) method for calibrating a daily rainfall-runoff model, a Tank model, was compared with that of the Downhill Simplex method. In synthetic data study, 100% success rates for all objective functions were obtained from the A-S method, and the SCE-UA method was also consistently able to obtain good estimates. The Downhill Simplex method was converged to the true values only when the initial guess was close to the true values. In the historical data study, the A-S method and the SCE-UA method showed consistently good results regardless of objective function. An objective function was developed, which puts more weight on the low flows.

State Machine and Downhill Simplex Approach for Vision-Based Nighttime Vehicle Detection

  • Choi, Kyoung-Ho;Kim, Do-Hyun;Kim, Kwang-Sup;Kwon, Jang-Woo;Lee, Sang-Il;Chen, Ken;Park, Jong-Hyun
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.439-449
    • /
    • 2014
  • In this paper, a novel vision-based nighttime vehicle detection approach is presented, combining state machines and downhill simplex optimization. In the proposed approach, vehicle detection is modeled as a sequential state transition problem; that is, vehicle arrival, moving, and departure at a chosen detection area. More specifically, the number of bright pixels and their differences, in a chosen area of interest, are calculated and fed into the proposed state machine to detect vehicles. After a vehicle is detected, the location of the headlights is determined using the downhill simplex method. In the proposed optimization process, various headlights were evaluated for possible headlight positions on the detected vehicles; allowing for an optimal headlight position to be located. Simulation results were provided to show the robustness of the proposed approach for nighttime vehicle and headlight detection.

Magnetoencephalography Source Localization using Improved Downhill Simplex Method in Frequency Domain (개선된 다운힐 심플렉스 법을 이용한 주파수 영역에서의 뇌자도 신호원 추정)

  • Kim, Byeong-Jun;An, Kwang-Ok;Lee, Chany;Jung, Hyun-Kyo
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.3
    • /
    • pp.231-238
    • /
    • 2008
  • Nelder-Mead downhill simplex method (DSM), a kind of deterministic optimization algorithms, has been used extensively for magnetoencephalography(MEG) dipolar source localization problems because it dose not require any functional differentiation. Like many other deterministic algorithms, however, it is very sensitive to the choice of initial positions and it can be easily trapped in local optima when being applied to complex inverse problems with multiple simultaneous sources. In this paper, some modifications have been made to make up for DSM's limitations and improve the accuracy of DSM. First of all, initial point determination method for DSM using magnetic fields on the sensor surface was proposed. Secondly, Univariant-DSM combined DSM with univariant method was proposed. To verify the performance of the proposed method, it was applied to simulated MEG data and practical MEG measurements.

Performance Evaluation of Barlat's and BBC Yield Criteria based on Directionalities of R-values and Yield Stresses

  • Lou, Y.;Bae, G.;Lee, C.;Park, C.;Buh, H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.277-280
    • /
    • 2009
  • This paper deals with the performance evaluation of Barlat's and BBC yield criteria by the directional variation prediction of the yield stresses and the R-values. for the evaluation of yield criteria, three kinds of Aluminum alloys and two kinds of steels were selected and their material properties are from Stoughton and Yoon's work. The experimental data required for the parameter evaluation included the uniaxial yield stresses and R-values (width-to-thickness strain ratio in uniaxial tension) measured in rolling direction, diaganol direction and the transverse direction, the equibiaxial yield stress and the R-value of equibiaxial tension. The optimization method, the Downhill Simplex method, was selected for the coefficient identification of Barlat91, Barlat97 and Barlat2000 yield criteria. Yield surface shapes, yield stress and R-value directionalities of Barlat's and BBC yield criteria were investigated and compared with the experimental data. Barlat2000 and BBC yield criteria were extremely qualified for the shape of the yield surface and the directionality of the yield stresses and the R-values.

  • PDF

A modeling for an ionospheric channel using recursive digital filter (Recursive 디지털 필터에 의한 전리층 채널 모델링)

  • 김성진
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.2
    • /
    • pp.143-150
    • /
    • 2004
  • In this paper, a recursive digital filter realization for an ionospheric channel model is proposed. This realization is in the form of a cascade of identical second-order all-pass filters, and is determined by only three parameters; two coefficients of an all-pass section, and the number of sections. The values of these parameters are optimized by a nonlinear optimization algorithm called the "downhill simplex method", so that the resulting time delay function closely approximates that of the ionospheric channel model. Comparing with the nonrecursive digital filter realization, it can be shown that the proposed recursive-digital-filter-realization is advantageous in points of view for the numbers of filter coefficients and the realization.

  • PDF

Integrated Optimization Design of Carbon Fiber Composite Framework for Small Lightweight Space Camera

  • Yang, Shuai;Sha, Wei;Chen, Changzheng;Zhang, Xingxiang;Ren, Jianyue
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.389-395
    • /
    • 2016
  • A Carbon Fiber Composite (CFC) framework was designed for a small lightweight space camera. According to the distribution characteristics of each optical element in the optical system, CFC (M40J) was chosen to accomplish the design of the framework. TC4 embedded parts were used to solve the low accuracy of the CFC framework interface problem. An integrated optimization method and the optimization strategy which combined a genetic global optimization algorithm with a downhill simplex local optimization algorithm were adopted to optimize the structure parameters of the framework. After optimization, the total weight of the CFC framework and the TC4 embedded parts is 15.6 kg, accounting for only 18.4% that of the camera. The first order frequency of the camera reaches 104.8 Hz. Finally, a mechanical environment test was performed, and the result demonstrates that the first order frequency of the camera is 102 Hz, which is consistent with the simulation result. It further verifies the rationality and correctness of the optimization result. The integrated optimization method mentioned in this paper can be applied to the structure design of other space cameras, which can greatly improve the structure design efficiency.

Fast and Accurate Rigid Registration of 3D CT Images by Combining Feature and Intensity

  • June, Naw Chit Too;Cui, Xuenan;Li, Shengzhe;Kim, Hak-Il;Kwack, Kyu-Sung
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • Computed tomography (CT) images are widely used for the analysis of the temporal evaluation or monitoring of the progression of a disease. The follow-up examinations of CT scan images of the same patient require a 3D registration technique. In this paper, an automatic and robust registration is proposed for the rigid registration of 3D CT images. The proposed method involves two steps. Firstly, the two CT volumes are aligned based on their principal axes, and then, the alignment from the previous step is refined by the optimization of the similarity score of the image's voxel. Normalized cross correlation (NCC) is used as a similarity metric and a downhill simplex method is employed to find out the optimal score. The performance of the algorithm is evaluated on phantom images and knee synthetic CT images. By the extraction of the initial transformation parameters with principal axis of the binary volumes, the searching space to find out the parameters is reduced in the optimization step. Thus, the overall registration time is algorithmically decreased without the deterioration of the accuracy. The preliminary experimental results of the study demonstrate that the proposed method can be applied to rigid registration problems of real patient images.

Bending of steel fibers on partly supported elastic foundation

  • Hu, Xiao Dong;Day, Robert;Dux, Peter
    • Structural Engineering and Mechanics
    • /
    • v.12 no.6
    • /
    • pp.657-668
    • /
    • 2001
  • Fiber reinforced cementitious composites are nowadays widely applied in civil engineering. The postcracking performance of this material depends on the interaction between a steel fiber, which is obliquely across a crack, and its surrounding matrix. While the partly debonded steel fiber is subjected to pulling out from the matrix and simultaneously subjected to transverse force, it may be modelled as a Bernoulli-Euler beam partly supported on an elastic foundation with non-linearly varying modulus. The fiber bridging the crack may be cut into two parts to simplify the problem (Leung and Li 1992). To obtain the transverse displacement at the cut end of the fiber (Fig. 1), it is convenient to directly solve the corresponding differential equation. At the first glance, it is a classical beam on foundation problem. However, the differential equation is not analytically solvable due to the non-linear distribution of the foundation stiffness. Moreover, since the second order deformation effect is included, the boundary conditions become complex and hence conventional numerical tools such as the spline or difference methods may not be sufficient. In this study, moment equilibrium is the basis for formulation of the fundamental differential equation for the beam (Timoshenko 1956). For the cantilever part of the beam, direct integration is performed. For the non-linearly supported part, a transformation is carried out to reduce the higher order differential equation into one order simultaneous equations. The Runge-Kutta technique is employed for the solution within the boundary domain. Finally, multi-dimensional optimization approaches are carefully tested and applied to find the boundary values that are of interest. The numerical solution procedure is demonstrated to be stable and convergent.