• 제목/요약/키워드: simple tunnel support/reinforcement design system

검색결과 3건 처리시간 0.015초

토사터널에서의 각부보강공법 적용성 연구 (A Case Study on Elephant Foot Method for Tunnelling in the Soft Ground)

  • 박치면;이호;박재훈;윤창기;황제돈
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.863-874
    • /
    • 2009
  • The engineering characteristics and the reinforcement effect of the elephant foot method were discussed with parametric study. The elephant foot method is adopted to support the loads transferred from tunnel crown and improve bearing capacity of elephant foot in poor ground condition. The evaluation of reinforcement effect, which has the mechanical relationship between ground condition, footing size and reinforcement system, was carried out through the previous research and numerical analysis. In addition, the simple design chart was proposed to estimate the applicability of the elephant foot reinforcement method. It will be practical for the engineer to determine the optimum reinforcement method for safe tunnelling in soft ground condition.

  • PDF

록볼트로 보강된 터널주변지반의 강도정수 변화에 대한 연구 (A study on the change of strength parameters reinforced rock bolt in the ground around tunnel)

  • 김상환;방규민
    • 한국터널지하공간학회 논문집
    • /
    • 제7권1호
    • /
    • pp.51-61
    • /
    • 2005
  • 터널의 주변지반을 보강할 경우 지반의 강도정수는 변화한다. 그러므로 보강된 터널주변지반의 지보, 보조 및 보강, 굴착설계 시 보강된 주변지반의 강도기준에 대하여 고려하여야 할 것이다. 따라서 본 논문에서는 터널의 주변지반을 보강할 경우 터널주변지반의 복합거동에 대한 연구로써 간편 터널 지보/보강 설계법과 보강된 주변지반의 강도정수변화에 대하여 이론적 및 실험적으로 연구하였으며, 또한 터널주변 강도정수 변화 결과에 따른 복합항복함수에 대해서도 제시하였다. 연구결과, 록볼트의 경우에는 터널주변지반의 내부마찰각의 증가보다는 점착력의 증가에 많은 영향을 준다는 것을 알 수 있었다.

  • PDF

Permanent Support for Tunnels using NMT

  • Barton, Nick
    • 한국암반공학회:학술대회논문집
    • /
    • 한국암반공학회 1995년도 정기총회 및 학술발표회
    • /
    • pp.1-26
    • /
    • 1995
  • Key aspects of the Norwegian Method of Tunnelling (NMT) are reviewed. These include a predictive method of support design using the six-parameter Q-system of rock mass characterisation. The rock mass rating or Q-value is updated during tunnel driving. The designed tunnel support generally consists of wet process, steel fibre reinforced shotcrete combined with fully grouted, untensioned rock bolts, Even in poor rock conditions S(fr) + B usually acts as the final rock reinforcement and tunnel lining. Since it is a drained lining, it is very economic compared to cast concrete with membranes. Light, free-standing steel liners are used to prevent water affecting the runnel environment. Rock mass conditions, and hence lining design and cost estimation can be assessed by careful use of seismic surveys. Relationships between the P-wave velocity, the rock mass deformation modulus and the Q-value have recently been established, where tunnel depth, rock porosity and the uniaxial compression strength of the rock are important variables. The rock mass modulus estimate, and simple index testing of the joints, provide the key input which joints are discretely represented (either in two dimensions with the UDEC code or in three dimensions with the 3DEC code) is generally favoured compared to continuum analysis. The latter may give a misleading impression of uniformity and deformations tend to be understimated. Q-system NMT designs of S(fr) + B (fibre reinforced shotcrete and bolting) are numerically checked and adjustments made to bolt capacities and shotcrete thickness if overloading is evident around the modelled profile.

  • PDF