• Title/Summary/Keyword: simple order

Search Result 5,120, Processing Time 0.029 seconds

Thermal buckling of functionally graded plates using a n-order four variable refined theory

  • Abdelhak, Z.;Hadji, L.;Daouadji, T.H.;Bedia, E.A.
    • Advances in materials Research
    • /
    • v.4 no.1
    • /
    • pp.31-44
    • /
    • 2015
  • This paper presents a simple n-order four variable refined theory for buckling analysis of functionally graded plates. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations of the present theory is reduced, and hence, makes it simple to use. The present theory is variationally consistent, uses the n-order polynomial term to represent the displacement field, does not require shear correction factor, and eliminates the shear stresses at the top and bottom surfaces. A power law distribution is used to describe the variation of volume fraction of material compositions. Equilibrium and stability equations are derived based on the present n-order refined theory. The non-linear governing equations are solved for plates subjected to simply supported boundary conditions. The thermal loads are assumed to be uniform, linear and non-linear distribution through-the-thickness. The effects of aspect and thickness ratios, gradient index, on the critical buckling are all discussed.

A FOURTH-ORDER FAMILY OF TRIPARAMETRIC EXTENSIONS OF JARRATT'S METHOD

  • Kim, Young Ik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.579-587
    • /
    • 2012
  • A fourth-order family of triparametric extensions of Jarratt's method are proposed in this paper to find a simple root of nonlinear algebraic equations. Convergence analysis including numerical experiments for various test functions apparently verifies the fourth-order convergence and asymptotic error constants.

A QUADRAPARAMETRIC FAMILY OF EIGHTH-ORDER ROOT-FINDING METHODS

  • Kim, Young Ik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.133-143
    • /
    • 2014
  • A new three-step quadraparametric family of eighth-order iterative methods free from second derivatives are proposed in this paper to find a simple root of a nonlinear equation. Convergence analysis as well as numerical experiments confirms the eighth-order convergence and asymptotic error constants.

A simple shear deformation theory based on neutral surface position for functionally graded plates resting on Pasternak elastic foundations

  • Meksi, Abdeljalil;Benyoucef, Samir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1215-1240
    • /
    • 2015
  • In this work, a novel simple first-order shear deformation plate theory based on neutral surface position is developed for bending and free vibration analysis of functionally graded plates and supported by either Winkler or Pasternak elastic foundations. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations of the present theory is reduced, and hence, makes it simple to use. The governing equations are derived by employing the Hamilton's principle and the physical neutral surface concept. There is no stretching-bending coupling effect in the neutral surface-based formulation, and consequently, the governing equations and boundary conditions of functionally graded plates based on neutral surface have the simple forms as those of isotropic plates. Numerical results of present theory are compared with results of the traditional first-order and the other higher-order theories reported in the literature. It can be concluded that the proposed theory is accurate and simple in solving the static bending and free vibration behaviors of functionally graded plates.

Unified Parametric Approaches for Observer Design in Matrix Second-order Linear Systems

  • Wu Yun-Li;Duan Guang-Ren
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.159-165
    • /
    • 2005
  • This paper designs observers for matrix second-order linear systems on the basis of generalized eigenstructure assignment via unified parametric approach. It is shown that the problem is closely related with a type of so-called generalized matrix second-order Sylvester matrix equations. Through establishing two general parametric solutions to this type of matrix equations, two unified complete parametric methods for the proposed observer design problem are presented. Both methods give simple complete parametric expressions for the observer gain matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the right factorization of the system, and allows eigenvalues of the error system to be set undetermined and sought via certain optimization procedures. A spring-mass system is utilized to show the effect of the proposed approaches.

Parametric Approaches for Eigenstructure Assignment in High-order Linear Systems

  • Duan Guang-Ren
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.419-429
    • /
    • 2005
  • This paper considers eigenstructure assignment in high-order linear systems via proportional plus derivative feedback. It is shown that the problem is closely related with a type of so-called high-order Sylvester matrix equations. Through establishing two general parametric solutions to this type of matrix equations, two complete parametric methods for the proposed eigenstructure assignment problem are presented. Both methods give simple complete parametric expressions for the feedback gains and the closed-loop eigenvector matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically very simple and reliable; the second one utilizes the right factorization of the system, and allows the closed-loop eigenvalues to be set undetermined and sought via certain optimization procedures. An example shows the effect of the proposed approaches.

ON THE ORDER AND RATE OF CONVERGENCE FOR PSEUDO-SECANT-NEWTON'S METHOD LOCATING A SIMPLE REAL ZERO

  • Kim, Young Ik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.2
    • /
    • pp.133-139
    • /
    • 2006
  • By combining the classical Newton's method with the pseudo-secant method, pseudo-secant-Newton's method is constructed and its order and rate of convergence are investigated. Given a function $f:\mathbb{R}{\rightarrow}\mathbb{R}$ that has a simple real zero ${\alpha}$ and is sufficiently smooth in a small neighborhood of ${\alpha}$, the convergence behavior is analyzed near ${\alpha}$ for pseudo-secant-Newton's method. The order of convergence is shown to be cubic and the rate of convergence is proven to be $\(\frac{f^{{\prime}{\prime}}(\alpha)}{2f^{\prime}(\alpha)}\)^2$. Numerical experiments show the validity of the theory presented here and are confirmed via high-precision programming in Mathematica.

  • PDF

A novel first-order shear deformation theory for laminated composite plates

  • Sadoune, Mohamed;Tounsi, Abdelouahed;Houari, Mohammed Sid Ahmed;Adda Bedia, El Abbes
    • Steel and Composite Structures
    • /
    • v.17 no.3
    • /
    • pp.321-338
    • /
    • 2014
  • In the present study, a new simple first-order shear deformation theory is presented for laminated composite plates. Moreover, the number of unknowns of this theory is the least one comparing with the traditional first-order and the other higher-order shear deformation theories. Equations of motion and boundary conditions are derived from Hamilton's principle. Analytical solutions of simply supported antisymmetric cross-ply and angle-ply laminates are obtained and the results are compared with the exact three-dimensional (3D) solutions and those predicted by existing theories. It can be concluded that the proposed theory is accurate and simple in solving the static bending and free vibration behaviors of laminated composite plates.

A Note on Estimation Under Discrete Time Observations in the Simple Stochastic Epidemic Model

  • Oh, Chang-Hyuck
    • Journal of the Korean Statistical Society
    • /
    • v.22 no.1
    • /
    • pp.133-138
    • /
    • 1993
  • We consider two estimators of the infection rate in the simple stochastic epidemic model. It is shown that the maximum likelihood estimator of teh infection rate under the discrete time observation does not have the moment of any positive order. Some properties of the Choi-Severo estimator, an approximation to the maximum likelihood estimator, are also investigated.

  • PDF