• Title/Summary/Keyword: simple analytical method

Search Result 698, Processing Time 0.024 seconds

A Simple and Efficient Method to Determine Rivaroxaban in Rat Plasma Using Liquid-Liquid Extraction and LC-MRM

  • Lee, Hyo Chun;Kim, Dong Yoon;Choi, Min-Jong;Jin, Sung Giu;Choi, Yong Seok
    • Mass Spectrometry Letters
    • /
    • v.10 no.2
    • /
    • pp.66-70
    • /
    • 2019
  • Rivaroxaban (RRN) is the first available active direct factor Xa inhibitor (anticoagulant) with oral administration. Due to its success in market, there have been efforts to develop various RRN formulations, and the development of good analytical methods for its in vivo evaluation is an essential prerequisite. Thus, here, a simple and efficient method to determine RRN in rat plasma using liquid-liquid extraction (LLE) and liquid chromatography and multiple reaction monitoring (LC-MRM) was presented. The use of ethyl acetate as the LLE solvent results appropriate extraction and purification of RRN and it also helps the significant reduction of rat plasma volume required for RRN quantitation. The developed method showed good analytical performance including specificity, linearity ($r^2{\geq}0.999$ within 0.5 - 500 ng/mL), sensitivity (the lower limit of quantitation at 0.5 ng/mL), accuracy (89.3 - 107.0%), precision (${\geq}12.7%$), and recovery (89.2 - 105.7%). Additionally, RRN in sample extracts showed good stability. Finally, the applicability of the validated method to the PK evaluation of RRN was confirmed after its oral administration to normal rats. The present method is the first analytical method employing LLE for the simple and efficient extraction and purification of RRN in rat plasma. Therefore, the present method can contribute to the development of new RRN formulations as well as to the monitoring of RRN in special clinical situations through its efficient determination in various samples with or without minor modification.

The study of simplified technique compared with analytical solution method for calculating the energy consumption loads of four houses having various wall construction

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.1
    • /
    • pp.46-58
    • /
    • 2011
  • A steady-state analysis and a simple dynamic model as simplified methods are developed, and results of energy consumption loads are compared with results obtained using computer to evaluate the analytical solution. Before obtaining simplified model a mathematical model is formulated for the effect of wall mass on the thermal performance of four different houses having various wall construction. This analytical study was motivated by the experimental work of Burch et al. An analytical solution of one-dimensional, linear, partial differential equation for wall temperature profiles and room air temperatures is obtained using the Laplace transform method. Typical Meteorological Year data are processed to yield hourly average monthly values. This study is conducted using weather data from four different locations in the United States: Albuquerque, New mexico; Miami, Florida; Santa Maria, California; and Washington D.C. for both winter and summer conditions. The steady state analysis that does not include the effect of thermal mass can provide an accurate estimate of energy consumption in most cases except for houses #2 and #4 in mild weather areas. This result shows that there is an effect of mass on the thermal performance of heavily constructed house in mild weather conditions. The simple dynamic model is applicable for high cycling rates and accurate values of inside wall temperature and ambient air temperature.

An Analytic Method for the Residual Strength Evaluation of Fire-Damaged Reinforced Concrete Beam

  • Park, Won-jun;Park, Ki-bong;Lee, Han-seung
    • Architectural research
    • /
    • v.10 no.2
    • /
    • pp.37-42
    • /
    • 2008
  • This study is to get the proper evaluation of the residual property of reinforced concrete beam exposed to fire. This study focused on the strength resistance and analytical evaluation of RC members exposed high temperature. And this study is the basis analytical research to conduct the other studies. To analysis by the finite element method, the Total-RC program was used to analysis it and the Total-Temp program was also used to analysis the temperature distributions at the section. All of results were compared with the pre-existing experimental data of simple supported beam. Using it, the parameters influencing the structural capacity of the high temperature-damaged RC members and residual strength estimation are investigated. The temperature distribution and the structural capacity at the section are calculated in this step. An application of this method is compared with the heating test result and residual property test for simple supported beam which is subjected to ISO 834 test fire. The results of this study are as follows; 1) The loads-displacement relationship of RC beam, considering initial thermal stress of cross section and heat transfer analysis are estimated comparing analytical value with pre-existing experimental results. 2) by the heating time (0, 1, 2 hours), the results of analysis with parameters show that the load capacity exposing at fire is affected.

Forced nonlinear vibration by means of two approximate analytical solutions

  • Bayat, Mahmoud;Bayat, Mahdi;Pakar, Iman
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.853-862
    • /
    • 2014
  • In this paper, two approximate analytical methods have been applied to forced nonlinear vibration problems to assess a high accurate analytical solution. Variational Iteration Method (VIM) and Perturbation Method (PM) are proposed and their applications are presented. The main objective of this paper is to introduce an alternative method, which do not require small parameters and avoid linearization and physically unrealistic assumptions. Some patterns are illustrated and compared with numerical solutions to show their accuracy. The results show the proposed methods are very efficient and simple and also very accurate for solving nonlinear vibration equations.

The Analytical Transfer Matrix Method Combined with Supersymmetry: Coulomb Potential

  • Sun, Ho-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.408-412
    • /
    • 2007
  • Combining the analytical transfer matrix method with supersymmetry algebra, a new quantization condition is suggested. To demonstrate the efficiency of the new quantization condition, the eigenenergies of the Coulomb potential are analytically derived. The scattering-led phase shifts are also determined and they are the same for all Coulomb potential states. It is found that the new quantization condition is mathematically simple and exact.

Analytical model of isolated bridges considering soil-pile-structure interaction for moderate earthquakes

  • Mohammad Shamsi;Ehsan Moshtagh;Amir H. Vakili
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.529-545
    • /
    • 2023
  • The coupled soil-pile-structure seismic response is recently in the spotlight of researchers because of its extensive applications in the different fields of engineering such as bridges, offshore platforms, wind turbines, and buildings. In this paper, a simple analytical model is developed to evaluate the dynamic performance of seismically isolated bridges considering triple interactions of soil, piles, and bridges simultaneously. Novel expressions are proposed to present the dynamic behavior of pile groups in inhomogeneous soils with various shear modulus along with depth. Both cohesive and cohesionless soil deposits can be simulated by this analytical model with a generalized function of varied shear modulus along the soil depth belonging to an inhomogeneous stratum. The methodology is discussed in detail and validated by rigorous dynamic solution of 3D continuum modeling, and time history analysis of centrifuge tests. The proposed analytical model accuracy is guaranteed by the acceptable agreement between the experimental/numerical and analytical results. A comparison of the proposed linear model results with nonlinear centrifuge tests showed that during moderate (frequent) earthquakes the relative differences in responses of the superstructure and the pile cap can be ignored. However, during strong excitations, the response calculated in the linear time history analysis is always lower than the real conditions with the nonlinear behavior of the soil-pile-bridge system. The current simple and efficient method provides the accuracy and the least computational costs in comparison to the full three-dimensional analyses.

Theoretical analysis of Y-shape bridge and application

  • Lu, Peng-Zhen;Zhang, Jun-Ping;Zhao, Ren-Da;Huang, Hai-Yun
    • Structural Engineering and Mechanics
    • /
    • v.31 no.2
    • /
    • pp.137-152
    • /
    • 2009
  • Mechanic behavior of Y-shape thin-walled box girder bridge structure is complex, so one can not exactly hold the mechanical behavior of the Y-shape thin-walled box girder bridge structure through general calculation theory and analytical method. To hold the mechanical behavior better, based on elementary beam theory, by increasing the degree of freedom analytical method, taking account of restrained torsiondistortion angledistortion warp and shearing lag effect at the same time, authors obtain a thin-walled box beam analytical element of 10 degrees of freedom of every node, derive stiffness matrix of the element, and code a finite element procedure. In addition, authors combine the obtained procedure with spatial grillage analytical method, meanwhile, they build a new analytical method that is the spatial thin-walled box girder element grillage analysis method. In order to validate the precision of the obtained analysis method, authors analyze a type Y-shape thin-walled box girder bridge structure according to the elementary beam theory analytical method, the shell theory analytical method and the spatial thin-walled box girder element grillage analysis method respectively. At last, authors test a type Y-shape thin-walled box girder bridge structure. Comparisons of the results of theory analysis with the experimental text show that the spatial thin-walled box girder element grillage analysis method is simple and exact. The research results are helpful for the knowledge of the mechanics property of these Y-shape thin-walled box girder bridge structures.

A Study on the Headway of the Personal Rapid Transit System (개인고속이동(Personal Rapid Transit) 시스템의 운전시격에 대한 연구)

  • Shin Ducko;Kim Yong-Kyu;Lee Jun-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.6 s.31
    • /
    • pp.586-591
    • /
    • 2005
  • We deal with the headway which effects on the performance of the PRT(Personal Rapid Transit) system and the system safety. The headway, time between passage of one vehicle and the next, is one of the important factors to assess the line capacity, which has a cue to solve the problem of the congestion in public transportation. To decide the headway there are many important factors, especially such as the failure vehicle deceleration rate, the following simple analytical equation can be made to assess the relation between the line speed and the minimum headway. In this paper we employ a numerical analysis method using a simple analytical equations for the evaluation of the minimum headway and show simple simulation results.

An Analytical Study on the Structural Behavior of Composite Beams (합성보의 거동에 관한 해석적 연구)

  • 황영서;양구록;송준엽;권영봉
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.175-182
    • /
    • 1998
  • An analytical study to trace the nonlinear structural behavior of composite beams is undertaken to include the nonlinear material properties of steel sheeting, reinforcing steel bar and concrete. To trace Moment-curvature relations, sectioning analysis method and two simple formulas are developed. A simple power model which has been originally used to expect the flexural capacity of the beam to column connections is proposed and the second formula is composed of two experimental functions to express the Moment-curvature relation in the elastic and plastic range separately. The load-deflection behavior of the beams has been simulated by the step-by-step numerical integration method and is compared with the test results available.

  • PDF

A Study on Quantitative Method of Piperine in Pure Ground Black Pepper (후추중의 Piperine 정량법에 관한 연구)

  • 고종명
    • Journal of Food Hygiene and Safety
    • /
    • v.10 no.3
    • /
    • pp.169-174
    • /
    • 1995
  • Piperine, component of pure ground black pepper, has strong stimulative and hot. Analytical method for piperine was developed by high performance liquid chromatography. Analytical conditions are as follows, mobile phase is 70% methanol, detector UV 343 nm (0.05 AuFs), column is Novapak 5 C18 (15 cm $\times$ 4.6mm), flow rate is 1.0ml/min, chart speed is 0.25 cm/min and injection volume is 20 ul. Analytical results are as follows that relative standard deviation is 1.15%, calibration curve is y=170473.1x-7848.5 (R2=0.999) that shows good linearity. Standard solution of piperine is stable up to 10 hr and content of piperine in pureground black pepper is 4.97$\pm$0.86% Retention time of piperine in HPLC method is about 7 min. Therefore, the developed HPLC method including simple pretreatment of sample will be contribute to quality mangement.

  • PDF