• Title/Summary/Keyword: similitude requirements

Search Result 10, Processing Time 0.025 seconds

An Experimental Study on the Similitude Requirements of Reinforced Concrete Structures (철근콘크리트구조물의 상사법칙에 관한 실험적 연구)

  • Chung, Lan;Park, Hyun-Soo;Kim, Jeong-Seob
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.2
    • /
    • pp.165-174
    • /
    • 1995
  • It is well known that the behavior of R /C members under static cyclic loading is somewhat different from that under dynamic cyclic loading, such as earthquake loading, because static loading rate is substantially lower than that corresponding to the Frequencies of seismic excitation. The purpose of this research is to estabilish the reliance for modeling techniques of small-scale specirr~ens subjected to dynamic cyclic loading. This research focused on the similitude requirements for reinforced concrete frame structures subjeced to dynamic cyclic loading. Length scale ratio of specimens were 1 : 2 : 4, and eleven specimens were tested at the frequencies of 0.0025Hz-2.OHz. It was confirmed that rnode1ir.g techniques based on the similitude requirements were useful methods to evaluate the behavior of full-size R /C structures subjected to earthquake type loading.

A Study on the Similitude of Precast Concrete Panel Structure Using one-third Scale Subassemblage Model (1/3 축적 모형실험에 의한 프리캐스트 콘크리트 판구조의 상사성에 관한 연구)

  • 윤재진
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.3
    • /
    • pp.123-134
    • /
    • 1992
  • 본연구는 실물크기의 프리캐스트 콘크리트 판구조물의 부분구조체를 모형화하여 실험한 결과를 분석한 것이다. 구조물의 역학적 특성과 파괴성상을 파악하기 위한 구조실험은 실물크기의 구조물과 부재로써 실시하는 것이 가장 좋은 방법이지만, 이것은 치수가 크므로 공간적으로 제한을 받고 많은 시간과 비용을 필요로 하기 때문에 모형실험을 이용하게 된다. 이러한 모형실험을 최소한의 오차범위내에서 원형실험과 같은 재현하고 예측하도록 실험을 준비하는 데에는 상사법칙이 필요하게 된다. 모형은 무엇보다도 원형과의 응력-변형도 관계 등 구성재료에 대한 상사요구조건을 만족시키는 것이 중요하지만, 본 연구의 대상은 1/3축척으로써 기하학적인 요소와 사용재료에 대한 강도의 상사성만을 고려한 모형이다. 본 연구에서는 이러한 모형구조물의 거동을 원형실험결과와 비교하여 상사성 확보의 문제와 가능성을 조사하였다.

An Experimental Study on the Size Effect influencing to Mechanical Behavior of Reinforced Concrete Structures (철근 콘크리트 구조물의 역학적 거동에 미치는 크기효과에 관한 실험적 연구)

  • Park, Hyun-Soo;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.366-371
    • /
    • 1995
  • it is extremely difficult to perform the dynamic experiments with full-scale specimens. For this reason, small-scale structural models offer an attractive means to peform dynamic loading experiments. The purpose of this reserch is to estabilish the reliance for modeling techniques of small-scale specimens subjected to dynamic cyclic loading. This research focused on the similitude requirements for reinforced concrete frame structures subjected to dynamic cyclic loading. Length scale ratio of specimens were 1:2:4, and six specimens were tested at the frequencies of 0.0025Hz~2.0Hz. It was confirmed that modeling techniques based on the similitude requirements were useful method to evaluate the behavior of full-size R/C structures subjected to earthquake type loading.

  • PDF

Experimental study on high gravity dam strengthened with reinforcement for seismic resistance on shaking table

  • Wang, Mingming;Chen, Jianyun;Fan, Shuli;Lv, Shaolan
    • Structural Engineering and Mechanics
    • /
    • v.51 no.4
    • /
    • pp.663-683
    • /
    • 2014
  • In order to study the dynamic failure mechanism and aseismic measure for high concrete gravity dam under earthquake, the comparative models experiment on the shaking table was conducted to investigate the dynamic damage response of concrete gravity dam with and without the presence of reinforcement and evaluate the effectiveness of the strengthening measure. A new model concrete was proposed and applied for maintaining similitude with the prototype. A kind of extra fine wires as a substitute for rebar was embedded in four-points bending specimens of the model concrete to make of reinforced model concrete. The simulation of reinforcement concrete of the weak zones of high dam by the reinforced model concrete meets the similitude requirements. A tank filled with water is mounted at the upstream of the dam models to simulate the reservoir. The Peak Ground Acceleration (PGA) that induces the first tensile crack at the head of dam is applied as the basic index for estimating the overload capacity of high concrete dams. For the two model dams with and without strengthening tested, vulnerable parts of them are the necks near the crests. The results also indicate that the reinforcement is beneficial for improving the seismic-resistant capacity of the gravity dam.

Structural response relationship between scaled and prototype concrete load bearing systems using similarity requirements

  • Altunisik, Ahmet C.;Kalkan, Ebru;Basaga, Hasan B.
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.385-397
    • /
    • 2018
  • This study is focused on the investigation for similitude the requirements between prototype and scaled models to determine the structural behavior of concrete load bearing systems. The scaling concept has been utilized in many engineering branches, has been assisted to engineers and scientists for obtain the behavior of the prototype by using scaled model. The scaling can be done for two purposes, either scaling up or scaling down depending upon the application. Because, scaled down models are the experimentation on scaled models is cheaper than huge structures. These models also provide facilities for experimental work. Similarity relationships between systems are created either by field equations of the system or by dimensional analysis. Within this study, similarity relationships were obtained by both methods. The similarity relations obtained are applied to different load bearing systems and it is determined that the similarity relation is a general expression. In this study, as an example, column, frame, cantilever beam and simple beam are chosen and 1/2, 1/5 and 1/10 scales are applied. The results are compared with the analytical results which are obtained by creating of the finite element models with SAP2000 software of different scaled load bearing systems. The analysis results of all systems are examined and it is determined that the scale factors are constant depending on the scale types for different load bearing systems.

Structural behavior of arch dams considering experimentally validated prototype model using similitude and scaling laws

  • Altunisik, Ahmet Can;Kalkan, Ebru;Basaga, Hasan B.
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.101-116
    • /
    • 2018
  • As one of the most important engineering structures, arch dams are huge constructions built with human hands and have strategical importance. Because of the fact that long construction duration, water supply, financial reasons, major loss of life and material since failure etc., the design of arch dams is very important problem and should be done by expert engineers to determine the structural behavior more accurately. Finite element analyses and non-destructive experimental measurements can be used to investigate the structural response, but there are some difficulties such as spending a long time while modelling, analysis and in-situ testing. Therefore, it is more useful to conduct the research on the laboratory conditions and to transform the obtained results into real constructions. Within the scope of this study, it is aimed to determine the structural behavior of arch dams considering experimentally validated prototype laboratory model using similitude and scaling laws. Type-1 arch dam, which is one of five arch dam types suggested at the "Arch Dams" Symposium in England in 1968 is selected as reference prototype model. The dam is built considering dam-reservoir-foundation interaction and ambient vibration tests are performed to validate the finite element results such as dynamic characteristics, displacements, principal stresses and strains. These results are considered as reference parameters and used to determine the real arch dam response with different scales factors such as 335, 400, 416.67 and 450. These values are selected by considering previously examined dam projects. Arch heights are calculated as 201 m, 240 m, 250 m and 270 m, respectively. The structural response is investigated between the model and prototype by using similarity requirements, field equations, scaling laws etc. To validate these results, finite element models are enlarged in the same scales and analyses are repeated to obtain the dynamic characteristics, displacements, principal stresses and strains. At the end of the study, it is seen that there is a good agreement between all results obtained by similarity requirements with scaling laws and enlarged finite element models.

Shake table tests on a non-seismically detailed RC frame structure

  • Sharma, Akanshu;Reddy, G.R.;Vaze, K.K.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.1-24
    • /
    • 2012
  • A reinforced concrete (RC) framed structure detailed according to non-seismic detailing provisions as per Indian Standard was tested on shake table under dynamic loads. The structure had 3 main storeys and an additional storey to simulate the footing to plinth level. In plan the structure was symmetric with 2 bays in each direction. In order to optimize the information obtained from the tests, tests were planned in three different stages. In the first stage, tests were done with masonry infill panels in one direction to obtain information on the stiffness increase due to addition of infill panels. In second stage, the infills were removed and tests were conducted on the structure without and with tuned liquid dampers (TLD) on the roof of the structure to investigate the effect of TLD on seismic response of the structure. In the third stage, tests were conducted on bare frame structure under biaxial time histories with gradually increasing peak ground acceleration (PGA) till failure. The simulated earthquakes represented low, moderate and severe seismic ground motions. The effects of masonry infill panels on dynamic characteristics of the structure, effectiveness of TLD in reducing the seismic response of structure and the failure patterns of non-seismically detailed structures, are clearly brought out. Details of design and similitude are also discussed.

Seismic Performance Evaluation of 3 Story OMRCF Based on Scaled Model Testing (축소모델실험에 의한 철근콘크리트 3층 보통모멘트골조의 구조 성능 평가)

  • Han Sang-Whan;Kwon Gun-Up
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.673-678
    • /
    • 2005
  • ACI 318 (1999) defines three types of moment frames: Ordinary Moment Resisting Concrete Frame (OMRCF), Intermediate Moment Resisting Concrete Frame (IMRCF), and Special Moment Resisting Concrete Frame (SMRCF). OMRCF is the most popular type of moment frame in mild seismic zones that requires the least detail and design requirements. This study focuses on the seismic performance of Ordinary Moment Resisting Concrete Frames (OMRCF) designed only for gravity loads. For this purpose a 3-story OMRCF was designed in compliance with the minimum design requirements in ACI 318 (1999). An one third 3 story specimen was made and tested. For scaled model, the similitude law of true replica was applied. The specimen was loaded with quasi-static reversed cyclic lateral loading. The overall behavior of OMRCF is quite stable without abrupt strength degradation. It is found that tested frame has the base shear strength larger than the design base shear for seismic zone 1, 2A and 2B calculated using UBC 1997.

Optimization of mix design of micro-concrete for shaking table test

  • Zhou, Ji;Gao, Xin;Liu, Chaofeng
    • Advances in concrete construction
    • /
    • v.13 no.3
    • /
    • pp.215-221
    • /
    • 2022
  • Considering their similar mass densities, an attempt was made to optimize the mix design of micro-concrete that used barite sand as an aggregate by substituting marble powder (5%, 10%, 20%, 30%, 40%, 50%, 70%), clay brick powder (30%, 50%, 70%), and fly ash (30%, 50%, 70%) for the concrete (by mass) to form specimens for shaking table tests. The test results showed that for these three groups of materials, the substitutions had little effect on the density. The barite sand played a decisive role in the density, and the overall density of the specimens reached approximately 2.9 g/cm3. The compressive strength and elastic modulus decreased with an increase in the substitution rates for the three types of materials. Among them, the 28 day compressive strength values of the 40% and 50% marble powder groups were 11.73 MPa and 8.33 MPa, respectively, which were 58.7% and 70.7% lower than the control group, respectively. Their elastic modulus values were 1.33×104 MPa and 1.42×104 MPa, respectively, which were 39.1% and 35% lower than those of the control group, respectively. The 28 day compressive strength values of the 50% and 70% clay brick powder groups were 13.13 MPa and 5.8 MPa, respectively, which were 53.8% and 79.6% lower than the control group, respectively. Their elastic modulus values were 1.54×104 MPa and 1.19×104 MPa, respectively, which were 29.7% and 45.4% lower than those of the control group, respectively. The 28 day compressive strength values of the 50% and 70% fly ash groups were 13.5 MPa and 7.1 MPa, respectively, which were 52.5% and 75% lower than those of the control group, respectively. Their elastic modulus values were 1.36×104 MPa and 0.95×104 MPa, respectively, which were 37.9% and 56.6% lower than those of the control group, respectively. There was a linear relationship between the 28 day compressive strength and elastic modulus, with the correlation coefficient reaching a value higher than 0.88. The test results showed that the model materials met the high density, low compressive strength, and low elastic modulus requirements for shaking table tests, and the test data of the three groups of different alternative materials were compared and analyzed to provide references and assistance for relevant model testers.

A Study on Balanced -type Oseillating Mole-Drainer(III)-Model Test for Draft Force, Torque, Power and Moment (평행식 진동탄환 암거 천공기의 연구(III)-견인력, 토크, 동력 및 모멘크에 관한 모형시험-)

  • 김용환
    • Journal of Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 1976
  • This paper is the third one of the study on balanced type oscillating mole-drainer, the first one was presented in No 9. Gyeongsang College Report and the second one in Vol. 17, No.4 of the KSAE. In the first part of this study, the characteristics of traction forces between the nonoscillating earth working equipments and oscillating ones was compared. A model of the balanced type oscillating mole-drainer, which composed of a mechanism that may reduce the machine vibration, was designed following the dimensional analysis and similitude technique. The model test was carried out to clarify the balancing mechanism of the oscillating parts and other parts of the machine. In the light of the results from the model tests, a prototype machine was made for experimental purpose. Results from the field test by a reported in the near future. In the second report, the model tests were carried out under the same soil conditions, i.e, . oscillating frequency, running velocity, and oscillating amplitude, etc. It was clear that use of balanced type oscillating model could substantially reduce the vibration of the whole system of the machine, when compared with the nonoscillating type model. In this paper(the third report), results of investigation on the traction force, power requirement, and moment. etc, is presented. Analysis of variance technique was used for analyzing the effect of the frequency, amplitude, and running velocity on the draft force, torque, power requirements, and moments. The results obtained from the model tests are as follows, 1) By practicing a balanced-type oscillating mole-drainer, it was possible to reduce the traction resistance by 55.1-61. 2 percent of traction resistance, however, was 1.75 - 1.95 times greater than the value of resistance which was induced by use of a mole-drainer with single bullet. The resistance of rear shank against soil was considered as a main causing factor of the above results. 2) As the oscillation frequency was increased, the traction resistance was decreased. Considering on the effect of oscillation the greater the amplitude, and the slower the running velocity was, the greater the reduction ratio of traction resistance was. 3) The ratio of the traction resistance of oscillating mole-drainer to that of non-oscillating one could be represented as a function of dimensionless variable (V/$Af$). The results from the tests were well agreed with the reported results from the experim ents on oscillation plow or hoe. 4) By taking a lower value of (V/$Af$), reducing the traction resistance was possible. This fact meant, however, that the efficiency of mole drain practice would be lower. 5) It was experimentally confirmed under the same condition of soil that the variable (R/$rD1^3$) could be represented as a function of a variable($V^2/gD$) when a non\ulcornerocillating mole-drainer was used. 6) When a oscillating mole-drainer was used, the variable(R/$rD_1^{3}$) could be represented as a function of two variables ($v^2/gD_1$) and (V^2/gD_1$). 7) The torque was not affected by a change of frequency. However, a relation of proportionality existed between torque and amplitude, running velocity, and ratio of bullet diameter. When a balanced type oscillating mole-drainer with two bullets was used, torque was increased by 52.8-78. 4 percent and total power requirement was also increased. 8) Total power requirement was increased linearly in accordance with the increasing frequency, 41.96 percent of total power was used for oscillating action. The magnitude of total power requirement was 1. 8-9. 4 times greater than that of a non-oscillating mechanism. In the view point of power requirement, it was not advisable to increase the frequency, amplitude, running velocity, and ratio of bullet diameter at the same time. 9) Only the positive moment occured in the rear shank. Change of the diameter of a rear bullet, could not affect the balancing against the soil resistance. It was necessary for rear bullet to have a large resistance against soil only when the rear bullet was in backward motion. 10) Within an extent of the experimental base, optimum limits for several design factors were A=0.5cm, $f$=22.5Hz, V=O. 05m/sec, and $\lambda$=1.0 By adapting these values traction resistance was reduced by 40 percent and vibration acceleration wa s reduced by 60 percent. Even though the total , power requirements for operating a balanced type oscillation mechanism was greater ~than that of non-oscillating one, using a oscillating mechanism would be more effective. Because a balanced type oscillating mechanism is used, tractive resistance will be reduced and then the lighter . tractive equipment could be used.

  • PDF