The 6th International Conference on Construction Engineering and Project Management
/
pp.597-598
/
2015
In order to improve the reliability of cost estimation results using CBR, there has been a continuous issue on similarity measurement to accurately compute the distance among attributes and cases to retrieve the most similar singular or plural cases. However, these existing similarity measures have limitations in taking the covariance among attributes into consideration and reflecting the effects of covariance in computation of distances among attributes. To deal with this challenging issue, this research examines the weighted Mahalanobis distance based similarity measure applied to CBR cost estimation and carries out the comparative study on the existing distance measurement methods of CBR. To validate the suggest CBR cost model, leave-one-out cross validation (LOOCV) using two different sets of simulation data are carried out. Consequently, this research is expected to provide an analysis of covariance effects in similarity measurement and a basis for further research on the fundamentals of case retrieval.
The fractal study in river basin has been performed for the sinuosity of an individual stream and bifurcation of the stream network. The previous studies has suggested many methods or equations for the fractal dimension estimation in a river network. This study used those many equations for the estimation of fractal dimensions on the streams such as Bokha, Gonjiam, and Pocheon streams. The estimated dimensions are in the range of 1 to 1.359 for the individual stream and 1.634 to 2 for the stream network. The most of equations were suggested based on the assumption of self-similarity of a river basin for the individual stream and stream network. However, the real river basin could be characterized by self-affinity rather than self-similarity. Even though we estimate the dimensions by using many equations, we could not recommend which one is better equation for the estimation of fractal dimension. This might be from the self-similarity assumption of equations. Therefore, the assumption and research work of self-affinity will be needed for the appropriate estimation of fractal dimension in river basin.
한국언어정보학회 1996년도 Language, Information and Computation = Selected Papers from the 11th Pacific Asia Conference on Language, Information and Computation, Seoul
본 논문에서는 골프 동영상 속 스윙 자세 사이의 유사도를 측정할 수 있는 방법을 제안한다. 딥러닝 기반 인공지능 기술이 컴퓨터 비전 분야에 효과적인 것이 알려지면서 동영상을 기반으로 한 스포츠 데이터 분석에 인공지능을 활용하기 위한 시도가 증가하고 있다. 본 연구에서는 딥러닝 기반의 자세 추정 모델을 사용하여 골프 스윙 동영상 속 사람의 관절 좌표를 획득하였고, 이를 바탕으로 각 스윙 구간별 유사도를 측정하였다. 제안한 방법의 평가를 위해 GolfDB 데이터셋의 Driver 스윙 동영상을 활용하였다. 총 36명의 선수에 대해 스윙 동영상들을 두 개씩 짝지어 스윙 유사도를 측정한 결과, 본인의 또 다른 스윙이 가장 유사하다고 평가한 경우가 26명이었으며, 이때의 유사도 평균 순위는 약 5위로 확인되었다. 이로부터 비슷한 동작을 수행하고 있는 경우에도 면밀히 유사도를 측정하는 것이 가능함을 확인할 수 있었다.
Journal of the Korean Data and Information Science Society
/
제22권1호
/
pp.99-105
/
2011
We propose a semi-supervised learning algorithm based on a form of regularization that incorporates similarity and dissimilarity penalty terms. Our approach uses a graph-based encoding of similarity and dissimilarity. We also present a model-selection method which employs cross-validation techniques to choose hyperparameters which affect the performance of the proposed method. Simulations using two types of dat sets demonstrate that the proposed method is promising.
The Euclidean distance is sensitive to the absolute offsets of time sequences, so it is not a suitable similarity measure in terms of shape. In this paper. we propose an indexing scheme for efficient matching and retrieval of time sequences based on the minimum distance. The minimum distance can give a better estimation of similarity in shape between two time sequences. Our indexing scheme can match time sequences of similar shapes irrespective of their vortical positions and guarantees no false dismissals
International Journal of Knowledge Content Development & Technology
/
제5권1호
/
pp.49-68
/
2015
Given a query (a health question), retrieval of relevant frequently asked questions (FAQs) is essential as the FAQs provide both reliable and readable information to healthcare consumers. The retrieval requires the estimation of the semantic similarity between the query and each FAQ. The similarity estimation is challenging as semantic structures of Chinese healthcare FAQs are quite different from those of the FAQs in other domains. In this paper, we propose a conceptual model for Chinese healthcare FAQs, and based on the conceptual model, present a technique ECA that estimates conceptual similarities between FAQs. Empirical evaluation shows that ECA can help various kinds of retrievers to rank relevant FAQs significantly higher. We also make ECA online to provide services for FAQ retrievers.
사람의 DNA가 변하지 않는 것과 같이 사이버상의 악성코드도 변하지 않는 고유의 행위 특징을 갖고 있다. APT(Advanced Persistent Threat) 공격에 대한 방어수단을 사전에 확보하기 위해서는 악성코드의 악성 행위 특징을 추출해야 한다. 이를 위해서는 먼저 악성코드 간의 유사도를 계산하여 유사한 악성코드끼리 분류할 수 있어야 한다. 본 논문에서는 Windows OS 상에서 동작하는 악성코드 간의 유사도 계산 방법으로 'TF-IDF 코사인 유사도', 'Nilsimsa 유사도', '악성코드 기능 유사도', 'Jaccard 유사도'를 사용해 악성코드의 유형을 예측해보고, 그 결과를 보인다. 실험결과, 유사도 계산 방식마다 악성코드 유형에 따라 예측률의 차이가 매우 컸음을 발견할 수 있었다. 모든 결과에 월등한 정확도를 보인 유사도는 존재하지 않았으나, 본 실험결과를 이용하여 특정 패밀리의 악성코드를 분류할 때 어떤 유사도 계산 방식을 활용하는 것이 상대적으로 유리할지를 결정할 때 도움이 될 것으로 판단된다.
Estimating software development effort remains a complex problem attracting considerable research attention. Improving the estimation techniques available to project managers would facilitate more effective control of time and budgets in software development as well as market. However, estimation is difficult because of its similarity to export judgment approaches and fur its potential as an expert assistant in support of human judgment. Especially, in software development for DCS (Distributed Control System), because of infrastructure software related to target-machines hardware and process characteristics should be considered, estimating software development effort is more complex. This paper suggests software development effort estimation technique using neural network. The methods considered are based on COCOMO and case-based projects. Estimation results applied to case-based project appeared to have value fur software development effort estimation models.
Park, Sung-Jun;Islam, Md. Mahbubul;Baek, Joong-Hwan
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권3호
/
pp.1121-1141
/
2020
We propose a robust visual object tracking algorithm fusing a convolutional neural network tracker trained offline from a large number of video repositories and a color histogram based tracker to track objects for mixing immersive audio. Our algorithm addresses the problem of occlusion and large movements of the CNN based GOTURN generic object tracker. The key idea is the offline training of a binary classifier with the color histogram similarity values estimated via both trackers used in this method to opt appropriate tracker for target tracking and update both trackers with the predicted bounding box position of the target to continue tracking. Furthermore, a histogram similarity constraint is applied before updating the trackers to maximize the tracking accuracy. Finally, we compute the depth(z) of the target object by one of the prominent unsupervised monocular depth estimation algorithms to ensure the necessary 3D position of the tracked object to mix the immersive audio into that object. Our proposed algorithm demonstrates about 2% improved accuracy over the outperforming GOTURN algorithm in the existing VOT2014 tracking benchmark. Additionally, our tracker also works well to track multiple objects utilizing the concept of single object tracker but no demonstrations on any MOT benchmark.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.