• Title/Summary/Keyword: similarity measures

Search Result 305, Processing Time 0.027 seconds

A Social Network Analysis of Research Topics in Korean Nursing Science (한국 간호학 연구주제의 사회 연결망 분석)

  • Lee, Soo-Kyoung;Jeong, Senator;Kim, Hong-Gee;Yom, Young-Hee
    • Journal of Korean Academy of Nursing
    • /
    • v.41 no.5
    • /
    • pp.623-632
    • /
    • 2011
  • Purpose: This study was done to explore the knowledge structure of Korean Nursing Science. Methods: The main variables were key words from the research papers that were presented in the Journal of Korean Academy of Nursing and journals of the seven branches of the Korean Academy of Nursing. English titles and abstracts of the papers (n=5,936) published from 1995 through 2009 were included. Noun phrases were extracted from the corpora using an in-house program (BiKE Text Analyzer), and their co-occurrence networks were generated via a cosine similarity measure, and then the networks were analyzed and visualized using Pajek, a Social Network Analysis program. Results: With the hub and authority measures, the most important research topics in Korean Nursing Science were identified. Newly emerging topics by three-year period units were observed as research trends. Conclusion: This study provides a systematic overview on the knowledge structure of Korean Nursing Science. The Social Network Analysis for this study will be useful for identifying the knowledge structure in Nursing Science.

Restructuring Method for Object-Oriented Class Hierarchy (객체 지향 클래스 계층 구조 재구성 방법)

  • Jung, Kye-Dong;Choi, Young-Keun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.5
    • /
    • pp.1185-1203
    • /
    • 1998
  • When the class is added of deleted in object-oriented system, restructuring of class hierarchy is needed which enables new relationship with classes. But existing system requires much additional analysis costs because it is difficult to know the meaning between parent class and child class. This paper presents the updates method based on semantic modification through new relationship classification method. This method measures the similarity of classes and based on it's relationship, this method restructures class hierarchy by classifying not-equality, part-of, equality, inclusion, subset relation. This method can minimize the probability of meaning error for classes when the class hierarchy is changed. Also this enhances the reusability and understandability through various graphic and text processing.

  • PDF

Development of a Clustering Model for Automatic Knowledge Classification (지식 분류의 자동화를 위한 클러스터링 모형 연구)

  • 정영미;이재윤
    • Journal of the Korean Society for information Management
    • /
    • v.18 no.2
    • /
    • pp.203-230
    • /
    • 2001
  • The purpose of this study is to develop a document clustering model for automatic classification of knowledge. Two test collections of newspaper article texts and journal article abstracts are built for the clustering experiment. Various feature reduction criteria as well as term weighting methods are applied to the term sets of the test collections, and cosine and Jaccard coefficients are used as similarity measures. The performances of complete linkage and K-means clustering algorithms are compared using different feature selection methods and various term weights. It was found that complete linkage clustering outperforms K-means algorithm and feature reduction up to almost 10% of the total feature sets does not lower the performance of document clustering to any significant extent.

  • PDF

Real-Time Detection of Moving Objects from Shaking Camera Based on the Multiple Background Model and Temporal Median Background Model (다중 배경모델과 순시적 중앙값 배경모델을 이용한 불안정 상태 카메라로부터의 실시간 이동물체 검출)

  • Kim, Tae-Ho;Jo, Kang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.269-276
    • /
    • 2010
  • In this paper, we present the detection method of moving objects based on two background models. These background models support to understand multi layered environment belonged in images taken by shaking camera and each model is MBM(Multiple Background Model) and TMBM (Temporal Median Background Model). Because two background models are Pixel-based model, it must have noise by camera movement. Therefore correlation coefficient calculates the similarity between consecutive images and measures camera motion vector which indicates camera movement. For the calculation of correlation coefficient, we choose the selected region and searching area in the current and previous image respectively then we have a displacement vector by the correlation process. Every selected region must have its own displacement vector therefore the global maximum of a histogram of displacement vectors is the camera motion vector between consecutive images. The MBM classifies the intensity distribution of each pixel continuously related by camera motion vector to the multi clusters. However, MBM has weak sensitivity for temporal intensity variation thus we use TMBM to support the weakness of system. In the video-based experiment, we verify the presented algorithm needs around 49(ms) to generate two background models and detect moving objects.

Cody Recommendation System Using Deep Learning and User Preferences

  • Kwak, Naejoung;Kim, Doyun;kim, Minho;kim, Jongseo;Myung, Sangha;Yoon, Youngbin;Choi, Jihye
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.321-326
    • /
    • 2019
  • As AI technology is recently introduced into various fields, it is being applied to the fashion field. This paper proposes a system for recommending cody clothes suitable for a user's selected clothes. The proposed system consists of user app, cody recommendation module, and server interworking of each module and managing database data. Cody recommendation system classifies clothing images into 80 categories composed of feature combinations, selects multiple representative reference images for each category, and selects 3 full body cordy images for each representative reference image. Cody images of the representative reference image were determined by analyzing the user's preference using Google survey app. The proposed algorithm classifies categories the clothing image selected by the user into a category, recognizes the most similar image among the classification category reference images, and transmits the linked cody images to the user's app. The proposed system uses the ResNet-50 model to categorize the input image and measures similarity using ORB and HOG features to select a reference image in the category. We test the proposed algorithm in the Android app, and the result shows that the recommended system runs well.

The Abstraction Retrieval System of Cultural Videos using Scene Change Detection (장면전환검출을 이용한 교양비디오 개요 검색 시스템)

  • Kang Oh-Hyung;Lee Ji-Hyun;Rhee Yang-Won
    • The KIPS Transactions:PartB
    • /
    • v.12B no.7 s.103
    • /
    • pp.761-766
    • /
    • 2005
  • This paper proposes a video model for the implementation of the cultural video database system. We have utilized an efficient scene change detection method that segments cultural video into semantic units for efficient indexing and retrieval of video. Since video has a large volume and needs to be played for a longer time, it implies difficulty of viewing the entire video. To solve this Problem. the cultural video abstraction was made to save the time and widen the choices of video the video abstract is the summarization of scenes, which includes important events produced by setting up the abstraction rule.

Boosting the Reasoning-Based Approach by Applying Structural Metrics for Ontology Alignment

  • Khiat, Abderrahmane;Benaissa, Moussa
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.834-851
    • /
    • 2017
  • The amount of sources of information available on the web using ontologies as support continues to increase and is often heterogeneous and distributed. Ontology alignment is the solution to ensure semantic interoperability. In this paper, we describe a new ontology alignment approach, which consists of combining structure-based and reasoning-based approaches in order to discover new semantic correspondences between entities of different ontologies. We used the biblio test of the benchmark series and anatomy series of the Ontology Alignment Evaluation Initiative (OAEI) 2012 evaluation campaign to evaluate the performance of our approach. We compared our approach successively with LogMap and YAM++ systems. We also analyzed the contribution of our method compared to structural and semantic methods. The results obtained show that our performance provides good performance. Indeed, these results are better than those of the LogMap system in terms of precision, recall, and F-measure. Our approach has also been proven to be more relevant than YAM++ for certain types of ontologies and significantly improves the structure-based and reasoningbased methods.

Score Image Retrieval to Inaccurate OMR performance

  • Kim, Haekwang
    • Journal of Broadcast Engineering
    • /
    • v.26 no.7
    • /
    • pp.838-843
    • /
    • 2021
  • This paper presents an algorithm for effective retrieval of score information to an input score image. The originality of the proposed algorithm is that it is designed to be robust to recognition errors by an OMR (Optical Music Recognition), while existing methods such as pitch histogram requires error induced OMR result be corrected before retrieval process. This approach helps people to retrieve score without training on music score for error correction. OMR takes a score image as input, recognizes musical symbols, and produces structural symbolic notation of the score as output, for example, in MusicXML format. Among the musical symbols on a score, it is observed that filled noteheads are rarely detected with errors with its simple black filled round shape for OMR processing. Barlines that separate measures also strong to OMR errors with its long uniform length vertical line characteristic. The proposed algorithm consists of a descriptor for a score and a similarity measure between a query score and a reference score. The descriptor is based on note-count, the number of filled noteheads in a measure. Each part of a score is represented by a sequence of note-count numbers. The descriptor is an n-gram sequence of the note-count sequence. Simulation results show that the proposed algorithm works successfully to a certain degree in score image-based retrieval for an erroneous OMR output.

An Intelligent Residual Resource Monitoring Scheme in Cloud Computing Environments

  • Lim, JongBeom;Yu, HeonChang;Gil, Joon-Min
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1480-1493
    • /
    • 2018
  • Recently, computational intelligence has received a lot of attention from researchers due to its potential applications to artificial intelligence. In computer science, computational intelligence refers to a machine's ability to learn how to compete various tasks, such as making observations or carrying out experiments. We adopted a computational intelligence solution to monitoring residual resources in cloud computing environments. The proposed residual resource monitoring scheme periodically monitors the cloud-based host machines, so that the post migration performance of a virtual machine is as consistent with the pre-migration performance as possible. To this end, we use a novel similarity measure to find the best target host to migrate a virtual machine to. The design of the proposed residual resource monitoring scheme helps maintain the quality of service and service level agreement during the migration. We carried out a number of experimental evaluations to demonstrate the effectiveness of the proposed residual resource monitoring scheme. Our results show that the proposed scheme intelligently measures the similarities between virtual machines in cloud computing environments without causing performance degradation, whilst preserving the quality of service and service level agreement.

A Stepwise Rating Prediction Method for Recommender Systems (추천 시스템을 위한 단계적 평가치 예측 방안)

  • Lee, Soojung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.183-188
    • /
    • 2021
  • Collaborative filtering based recommender systems are currently indispensable function of commercial systems in various fields, being a useful service by providing customized products that users will prefer. However, there is a high possibility that the prediction of preferrable products is inaccurate, when the user's rating data are insufficient. In order to overcome this drawback, this study suggests a stepwise method for prediction of product ratings. If the application conditions of the prediction method corresponding to each step are not satisfied, the method of the next step is applied. To evaluate the performance of the proposed method, experiments using a public dataset are conducted. As a result, our method significantly improves prediction and precision performance of collaborative filtering systems employing various conventional similarity measures and outperforms performance of the previous methods for solving rating data sparsity.