• Title/Summary/Keyword: similarity matching and cloud

Search Result 6, Processing Time 0.017 seconds

A Negotiation Framework for the Cloud Management System using Similarity and Gale Shapely Stable Matching approach

  • Rajavel, Rajkumar;Thangarathinam, Mala
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2050-2077
    • /
    • 2015
  • One of the major issues in emerging cloud management system needs the efficient service level agreement negotiation framework, with an optimal negotiation strategy. Most researchers focus mainly on the atomic service negotiation model, with the assistance of the Agent Controller in the broker part to reduce the total negotiation time, and communication overhead to some extent. This research focuses mainly on composite service negotiation, to further minimize both the total negotiation time and communication overhead through the pre-request optimization of broker strategy. The main objective of this research work is to introduce an Automated Dynamic Service Level Agreement Negotiation Framework (ADSLANF), which consists of an Intelligent Third-party Broker for composite service negotiation between the consumer and the service provider. A broker consists of an Intelligent Third-party Broker Agent, Agent Controller and Additional Agent Controller for managing and controlling its negotiation strategy. The Intelligent third-party broker agent manages the composite service by assigning its atomic services to multiple Agent Controllers. Using the Additional Agent Controllers, the Agent Controllers manage the concurrent negotiation with multiple service providers. In this process, the total negotiation time value is reduced partially. Further, the negotiation strategy is optimized in two stages, viz., Classified Similarity Matching (CSM) approach, and the Truncated Negotiation Group Gale Shapely Stable Matching (TNGGSSM) approach, to minimize the communication overhead.

Semantic Clustering Model for Analytical Classification of Documents in Cloud Environment (클라우드 환경에서 문서의 유형 분류를 위한 시맨틱 클러스터링 모델)

  • Kim, Young Soo;Lee, Byoung Yup
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.11
    • /
    • pp.389-397
    • /
    • 2017
  • Recently semantic web document is produced and added in repository in a cloud computing environment and requires an intelligent semantic agent for analytical classification of documents and information retrieval. The traditional methods of information retrieval uses keyword for query and delivers a document list returned by the search. Users carry a heavy workload for examination of contents because a former method of the information retrieval don't provide a lot of semantic similarity information. To solve these problems, we suggest a key word frequency and concept matching based semantic clustering model using hadoop and NoSQL to improve classification accuracy of the similarity. Implementation of our suggested technique in a cloud computing environment offers the ability to classify and discover similar document with improved accuracy of the classification. This suggested model is expected to be use in the semantic web retrieval system construction that can make it more flexible in retrieving proper document.

Enhanced Cloud Service Discovery for Naïve users with Ontology based Representation

  • Viji Rajendran, V;Swamynathan, S
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.38-57
    • /
    • 2016
  • Service discovery is one of the major challenges in cloud computing environment with a large number of service providers and heterogeneous services. Non-uniform naming conventions, varied types and features of services make cloud service discovery a grueling problem. With the proliferation of cloud services, it has been laborious to find services, especially from Internet-based service repositories. To address this issue, services are crawled and clustered according to their similarity. The clustered services are maintained as a catalogue in which the data published on the cloud provider's website are stored in a standard format. As there is no standard specification and a description language for cloud services, new efficient and intelligent mechanisms to discover cloud services are strongly required and desired. This paper also proposes a key-value representation to describe cloud services in a formal way and to facilitate matching between offered services and demand. Since naïve users prefer to have a query in natural language, semantic approaches are used to close the gap between the ambiguous user requirements and the service specifications. Experimental evaluation measured in terms of precision and recall of retrieved services shows that the proposed approach outperforms existing methods.

A Novel Cryptosystem Based on Steganography and Automata Technique for Searchable Encryption

  • Truong, Nguyen Huy
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2258-2274
    • /
    • 2020
  • In this paper we first propose a new cryptosystem based on our data hiding scheme (2,9,8) introduced in 2019 with high security, where encrypting and hiding are done at once, the ciphertext does not depend on the input image size as existing hybrid techniques of cryptography and steganography. We then exploit our automata approach presented in 2019 to design two algorithms for exact and approximate pattern matching on secret data encrypted by our cryptosystem. Theoretical analyses remark that these algorithms both have O(n) time complexity in the worst case, where for the approximate algorithm, we assume that it uses ⌈(1-ε)m)⌉ processors, where ε, m and n are the error of our string similarity measure and lengths of the pattern and secret data, respectively. In searchable encryption, our cryptosystem is used by users and our pattern matching algorithms are performed by cloud providers.

Entropy-Based 6 Degrees of Freedom Extraction for the W-band Synthetic Aperture Radar Image Reconstruction (W-band Synthetic Aperture Radar 영상 복원을 위한 엔트로피 기반의 6 Degrees of Freedom 추출)

  • Hyokbeen Lee;Duk-jin Kim;Junwoo Kim;Juyoung Song
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1245-1254
    • /
    • 2023
  • Significant research has been conducted on the W-band synthetic aperture radar (SAR) system that utilizes the 77 GHz frequency modulation continuous wave (FMCW) radar. To reconstruct the high-resolution W-band SAR image, it is necessary to transform the point cloud acquired from the stereo cameras or the LiDAR in the direction of 6 degrees of freedom (DOF) and apply them to the SAR signal processing. However, there are difficulties in matching images due to the different geometric structures of images acquired from different sensors. In this study, we present the method to extract an optimized depth map by obtaining 6 DOF of the point cloud using a gradient descent method based on the entropy of the SAR image. An experiment was conducted to reconstruct a tree, which is a major road environment object, using the constructed W-band SAR system. The SAR image, reconstructed using the entropy-based gradient descent method, showed a decrease of 53.2828 in mean square error and an increase of 0.5529 in the structural similarity index, compared to SAR images reconstructed from radar coordinates.

Strip Adjustment of Airborne Laser Scanner Data Using Area-based Surface Matching

  • Lee, Dae Geon;Yoo, Eun Jin;Yom, Jae-Hong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.6
    • /
    • pp.625-635
    • /
    • 2014
  • Multiple strips are required for large area mapping using ALS (Airborne Laser Scanner) system. LiDAR (Light Detection And Ranging) data collected from the ALS system has discrepancies between strips due to systematic errors of on-board laser scanner and GPS/INS, inaccurate processing of the system calibration as well as boresight misalignments. Such discrepancies deteriorate the overall geometric quality of the end products such as DEM (Digital Elevation Model), building models, and digital maps. Therefore, strip adjustment for minimizing discrepancies between overlapping strips is one of the most essential tasks to create seamless point cloud data. This study implemented area-based matching (ABM) to determine conjugate features for computing 3D transformation parameters. ABM is a well-known method and easily implemented for this purpose. It is obvious that the exact same LiDAR points do not exist in the overlapping strips. Therefore, the term "conjugate point" means that the location of occurring maximum similarity within the overlapping strips. Coordinates of the conjugate locations were determined with sub-pixel accuracy. The major drawbacks of the ABM are sensitive to scale change and rotation. However, there is almost no scale change and the rotation angles are quite small between adjacent strips to apply AMB. Experimental results from this study using both simulated and real datasets demonstrate validity of the proposed scheme.