• Title/Summary/Keyword: similar

Search Result 48,793, Processing Time 0.072 seconds

Agronomical studies on the major environmental factors of rice culture in Korea (수도재배의 주요환경요인에 관한 해석적 조사연구)

  • Yung-Sup Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.3
    • /
    • pp.49-82
    • /
    • 1965
  • For the stable and high yields of low-land rice in Korea, the characteristics of rice plant for the vegetative and physiological responses, plant type formation, and yield components have been studied in order to obtain the fundamental data for the improvement of cultural practices, especially for the ideal fertilizer application. Furthermore the environmental conditions in Korea including temperatures, light, precipitation, and soil conditions have been compared in the broad sense with those in Japan, and the application of nitrogen, phosphorus, potassium, silicate and other micro-nutrients were described in relation to the characteristics of environmental conditions for the improvement of fertilizer application. 1. The average yield of polished-rice per 10 are in Korea is about 204 kg and this values are much less than those in Japan and Taiwan where they produce 77% to 13% more than in Korea. The rate of yield increase a year in Korea is 4.2 kg, but in Japan and Taiwan the rates of yield increase a year are 81 % and 62%, respectively. It was also found that the coefficient of variation of yield is 7.7% in Korea, 6.7% in Japan and 2.5% in Taiwan. This means that the stability of producing rice in Korea is very low when compared with those in Japan and Taiwan. 2. It was learned from the results obtained from the 'annual yield estimation experiment' that there are big differences in the respect of plant type formations between rice crops grown in Japan and Korea. The important differences found were as follows: (1) The numbers of spikelets per 3.3 square meters are 891 in Korea and 1, 007 in Japan(13% more than in Korea). (2) The numbers of tillers per 3.3 square meters at the stage of maximum tillering are 1, 150 in Korea, but in Japan they showed 19% more than in Korea. (3) The ratio of effective tillers to total tillers is 77.5% in Korea and 74.7% in Japan, which seems to be higher in Korea than in Japan. But the ratio in Korea is very low when considered the numbers of total tillers in both countries. (4) The ratio of grain to straw is 85.4% in Korea and 96.3% in Japan. 3. The average temperatures during the growing season at the area of Suwon, Kwangjoo and Taegu are almost same as those in the district of Jookokoo(Fookoo yama) in Japan, i.e., the temperatures during the rice-growing season in Korea are similar to those in the southern-warm regions of Japan. 4. Considering the minimum temperatures at the stage of limiting transplanting, 13$^{\circ}C$, the time of transplanting might be 30 to 40 days earlier than presently practicing transplanting time, which comes around June 10. 5. The temperatures during the vegetative growth in Korea were higher than those temperatures that needed in the protein synthesis which ate the main metabolism during this stage. However, the temperatures at the time of reproductive growth was lower than the temperatures that needed in the sugar assimilation which is main metabolism in this stage. In this point of view, it might be considered that the proper time of growing rice plant in Korea would be rather earlier. 6. The temperatures and the day light conditions at the time of first tillering stage of rice plant, when planted as presenting transplanting practices, are very satisfactory, but the poor day light length, high temperatures and too wet conditions in the time of last-tillering stage(mid or last July) might cause the occurrence of disease such as blast. 7. The heading stage of rice plants at each region through nations when planted as presently practicing method comes when the day light length is short. 8. It was shown that the accumulated average air-temperature at the time of maturing stage was not enough and the heading time was too late, when considered the annual deviations of mean temperatures and low minimum temperatures. 9. The nitrogen content of each plant part at the each growing stage was very high at the stage of vegetative growth when compared with the nitrogen content at the stage of reproductive growth after heading. In this respect it was believed to be important to prevent the nutrient shortages at the reproductive stages, especially after the heading. 10. The area of unsatisfactory irrigation paddy fields and natural rain-fed paddy fields are getting reduced in Korea. The correlation between the rate of reducing unsatisfactory irrigation and natural rain-fed paddy fields and the rate of yield increase were computed. The correlation coefficients(r) between the area of unsatisfactory irrigation paddy fields and yield increase were +0.525, and between the natural rain-fed paddy fields and yield increase, +0.832 and between the unsatisfactory irrigation plus natural rain-fed paddy fields and yield increase, +0.84. And there were. highly significant positive correlations between natural rain-fed paddy fields and yield increases indicating that the less the area of natural rain-fed paddy fields, the greater the yields per unit area. 11. The results obtained from the fertilizer experiments (yield performance trials) conducted in both Korea and Japan showed that the yield of non-fertilized plots per 10 are was 231 kg in Korea and 360 kg in Japan. On the basis of this it might be concluded that the fertility of soil in Korea is lower than that in Japan. Furthermore it was. also found that the yields of non-nitrogen applied plots per 10 are were 236 kg in Korea and 383 kg in Japan. This also indicates that the yields of rice in Korea are largely depending on the nitrogen content in the soil. 12. The followings were obtained when the chemical natures of soils in both Korea and Japan were compared. (1) The content of organic matter, total nitrogen, exchangeable calcium, and magnesium in Korea were no more than the half those in Japan. (2) The content of N/2 chloride and soluble silicate in low-land soil were on the average lower in Korea. (3) The exchange capacity of bases in Korea was no more than half that in Japan. 13. It was also observed by comparing the soil nature of the soil with high yielding capacity with the soil with low yielding capacity that the exchange capacity of bases, exchangeable calcium and magnesium, potassium, phosphorus, manganese, silicate and iron were low in the soil with low yielding capacity. 14. The depth of furrow slice was always deeper in the soil with high yielding capacity, and the depth of furrow slice in Korea was also shallower than that in Japan. 15. Summarizing the various conditions mentioned previously and considering the effects of silicate and trace elements such as manganese and iron besides three elements on the physiological and plant type formation of rice crops, more realistic and more ideal fertilizing practices were proposed. proposed.

  • PDF

Kim Eung-hwan's Official Excursion for Drawing Scenic Spots in 1788 and his Album of Complete Views of Seas and Mountains (1788년 김응환의 봉명사경과 《해악전도첩(海嶽全圖帖)》)

  • Oh, Dayun
    • MISULJARYO - National Museum of Korea Art Journal
    • /
    • v.96
    • /
    • pp.54-88
    • /
    • 2019
  • The Album of Complete Views of Seas and Mountains comprises sixty real scenery landscape paintings depicting Geumgangsan Mountain, the Haegeumgang River, and the eight scenic views of Gwandong regions, as well as fifty-one pieces of writing. It is a rare example in terms of its size and painting style. The paintings in this album, which are densely packed with natural features, follow the painting style of the Southern School yet employ crude and unconventional elements. In them, stones on the mountains are depicted both geometrically and three-dimensionally. Since 1973, parts of this album have been published in some exhibition catalogues. The entire album was opened to the public at the special exhibition "Through the Eyes of Joseon Painters: Real Scenery Landscapes of Korea" held at the National Museum of Korea in 2019. The Album of Complete Views of Seas and Mountains was attributed to Kim Eung-hwan (1742-1789) due to the signature on the final leaf of the album and the seal reading "Bokheon(painter's penname)" on the currently missing album leaf of Chilbodae Peaks. However, there is a strong possibility that this signature and seal may have been added later. This paper intends to reexamine the creator of this album based on a variety of related factors. In order to understand the production background of Album of Complete Views of Seas and Mountains, I investigated the eighteenth-century tradition of drawing scenic spots while travelling in which scenery of was depicted during private travels or official excursions. Jeong Seon(1676-1759), Sim Sa-jeong(1707-1769), Kim Yun-gyeom(1711-1775), Choe Buk(1712-after 1786), and Kang Se-hwang(1713-1791) all went on a journey to Geumgangsan Mountain, the most famous travel destination in the late Joseon period, and created paintings of the mountain, including Album of Pungak Mountain in the Sinmyo Year(1711) by Jeong Seon. These painters presented their versions of the traditional scenic spots of Inner Geumgangsan and newly depicted vistas they discovered for themselves. To commemorate their private visits, they produced paintings for their fellow travelers or sponsors in an album format that could include several scenes. While the production of paintings of private travels to Geumgangsan Mountain increased, King Jeongjo(r. 1776-1800) ordered Kim Eung-hwan and Kim Hong-do, court painters at the Dohwaseo(Royal Bureau of Painting), to paint scenic spots in the nine counties of the Yeongdong region and around Geumgangsan Mountain. King Jeongjo selected these two as the painters for the official excursion taking into account their relationship, their administrative experience as regional officials, and their distinct painting styles. Starting in the reign of King Yeongjo(r. 1724-1776), Kim Eung-hwan and Kim Hong-do served as court painters at the Dohwaseo, maintained a close relationship as a senior and a junior and as colleagues, and served as chalbang(chief in large of post stations) in the Yeongnam region. While Kim Hong-do was proficient at applying soft and delicate brushstrokes, Kim Eung-hwan was skilled at depicting the beauty of robust and luxuriant landscapes. Both painters produced about 100 scenes of original drawings over fifty days of the official excursion. Based on these original drawings, they created around seventy album leaves or handscrolls. Their paintings enriched the tradition of depicting scenic spots, particularly Outer Inner Geumgang and the eight scenic views of Gwandong around Geumgangsan Mountain during private journeys in the eighteenth century. Moreover, they newly discovered places of scenic beauty in the Outer Geungang and Yeongdong regions, establishing them as new painting themes. The Album of Complete Views of Seas and Mountains consists of four volumes. The volumes I, II include twenty-nine paintings of Inner Geumgangsan; the volume III, seventeen scenes of Outer Geumgangsan; and the volume IV, fourteen images of Maritime Geumgangsan and the eight scenic views of Gwandong. These paintings produced on silk show crowded compositions, geometrical depictions of the stones and the mountains, and distinct presentation of the rocky peaks of Geumgangsan Mountain using white and grayish-blue pigments. This album reflects the Joseon painting style of the mid- and late eighteenth century, integrating influences from Jeong Seon, Kang Se-hwang, Sim Sa-jeong, Jeong Chung-yeop(1725-after 1800), and Kim Hong-do. In particular, some paintings in the album show similarities to Kim Hong-do's Album of Famous Mountains in Korea in terms of its compositions and painterly motifs. However, "Yeongrangho Lake," "Haesanjeong Pavilion," and "Wolsongjeong Pavilion" in Kim Eung-hwan's album differ from in the version by Kim Hong-do. Thus, Kim Eung-hwan was influenced by Kim Hong-do, but produced his own distinctive album. The Album of Complete Views of Seas and Mountains includes scenery of "Jaundam Pool," "Baegundae Peak," "Viewing Birobong Peak at Anmunjeom groove," and "Baekjeongbong Peak," all of which are not depicted in other albums. In his version, Kim Eung-hwan portrayed the characteristics of the natural features in each scenic spot in a detailed and refreshing manner. Moreover, he illustrated stones on the mountains using geometric shapes and added a sense of three-dimensionality using lines and planes. Based on the painting traditions of the Southern School, he established his own characteristics. He also turned natural features into triangular or rectangular chunks. All sixty paintings in this album appear rough and unconventional, but maintain their internal consistency. Each of the fifty-one writings included in the Album of Complete Views of Seas and Mountains is followed by a painting of a scenic spot. It explains the depicted landscape, thus helping viewers to understand and appreciate the painting. Intimately linked to each painting, the related text notes information on traveling from one scenic spot to the next, the origins of the place names, geographic features, and other related information. Such encyclopedic documentation began in the early nineteenth century and was common in painting albums of Geumgangsan Mountain in the mid- nineteenth century. The text following the painting of Baekhwaam Hermitage in the Album of Complete Views of Seas and Mountains documents the reconstruction of the Baekhwaam Hermitage in 1845, which provides crucial evidence for dating the text. Therefore, the owner of the Album of Complete Views of Seas and Mountains might have written the texts or asked someone else to transcribe them in the mid- or late nineteenth century. In this paper, I have inferred the producer of the Album of Complete Views of Seas and Mountains to be Kim Eung-hwan based on the painting style and the tradition of drawing scenic spots during official trips. Moreover, its affinity with the Handscroll of Pungak Mountain created by Kim Ha-jong(1793-after 1878) after 1865 is another decisive factor in attributing the album to Kim Eung-hwan. In contrast to the Album of Famous Mountains in Korea by Kim Hong-do, the Album of Complete Views of Seas and Mountains exerted only a minor influence on other painters. The Handscroll of Pungak Mountain by Kim Ha-jong is the sole example that employs the subject matter from the Album of Complete Views of Seas and Mountains and follows its painting style. In the Handscroll of Pungak Mountain, Kim Ha-jong demonstrated a painting style completely different from that in the Album of Seas and Mountains that he produced fifty years prior in 1816 for Yi Gwang-mun, the magistrate of Chuncheon. He emphasized the idea of "scholar thoughts" by following the compositions, painterly elements, and depictions of figures in the painting manual style from Kim Eung-hwan's Album of Complete Views of Seas and Mountains. Kim Ha-jong, a member of the Gaeseong Kim clan and the eldest grandson of Kim Eung-hwan, is presumed to have appreciated the paintings depicted in the nature of Album of Complete Views of Seas and Mountains, which had been passed down within the family, and newly transformed them. Furthermore, the contents and narrative styles of Yi Yu-won's writings attached to the paintings in the Handscroll of Pungak Mountain are similar to those of the fifty-one writings in Kim Eunghwan's album. This suggests a possible influence of the inscriptions in Kim Eung-hwan's album or the original texts from which these inscriptions were quoted upon the writings in Kim Ha-jong's handscroll. However, a closer examination will be needed to determine the order of the transcription of the writings. The Album of Complete View of Seas and Mountains differs from Kim Hong-do's paintings of his official trips and other painting albums he influenced. This album is a siginificant artwork in that it broadens the understanding of the art world of Kim Eung-hwan and illustrates another layer of real scenery landscape paintings in the late eighteenth century.

Studies on Sclerotium rolfsii Sacc. isolated from Magnolia kobus DC. in Korea (목련(Magnolia kobus DC.)에서 분리한 흰비단병균(Sclerotium rolfsii Sacc.)에 관한 연구)

  • Kim Kichung
    • Korean journal of applied entomology
    • /
    • v.13 no.3 s.20
    • /
    • pp.105-133
    • /
    • 1974
  • The present study is an attempt to solve the basic problems involved in the control of the Sclerotium disease. The biologic stranis of Sclerotium rolfsii Sacc., pathogen of Sclerotium disease of Magnolia kobus, were differentiated, and the effects of vitamins, various nitrogen and carbon sources on its mycelial growth and sclerotial production have been investigated. In addition the relationship between the cultural filtrate of Penicillium sp. and the growth of Sclerotium rolfsii, the tolerance of its mycelia or sclerotia to moist heat or drought and to Benlate (methyl-(butylcarbamoy 1)-2-benzimidazole carbamate), Tachigaren (3-hydroxy-5-methylisoxazole) and other chemicals were also clarified. The results are summarizee as follows: 1. There were two biologic strains, Type-l and Type-2 among isolates. They differed from each other in the mode of growth and colonial appearance on the media, aversion phenomenon and in their pathogenicity. These two types had similar pathogenicity to the Magnolia kobus and Robinia pseudoacasia, but behaved somewhat differently to the soybaen and cucumber, the Type-l being more virulent. 2. Except potassium nitrite, sodium nitrite and glycine, all of the 12 nitrogen sources tested were utilized for the mycelial growth and sclerotial production of this fungus when 10r/l of thiamine hydrochloride was added in the culture solution. Considering the forms of nitrogen, ammonium nitrogen was more available than nitrate nitrogen for the growth of mycelia, but nitrate nitrogen was better for sclerotia formation. Organic nitrogen showed different availabilities according to compounds used. While nitrite nitrogen was unavailable for both mycelial growth and sclerotial formation whether thiamine hydrochlioride was added or not. 3. Seven kinds of carbon sources examined were not effective in general, as long as thiamine hydrochloride was not added. When thiamine hydrochloride was added, glucose and saccharose exhibited mycelial growth, while rnaltose and soluble starch gave lesser, and xylose, lactose, and glycine showed no effect at all,. In the sclerotial production, all the tested carbon sources, except lactose, were effective, and glucose, maltose, saccharose, and soluble starch gave better results. 4. At the same level of nitrogen, the amount of mycelial growth increased as more carbon Sources were applied but decreased with the increase of nitrogen above 0.5g/1. The amount of sclerotial production decreased wi th the increase of carbon sources. 5. Sclerotium rolfsii was thiamine-defficient and required thiamine 20r/l for maximun growth of mycelia. At a higher concentration of more than 20r/l, however, mycelial growth decreased as the concentration increased, and was inhibited at l50r/l to such a degree of thiamine-free. 6. The effect of the nitrogen sources on the mycelial growth under the presence of thiamine were recognized in the decreasing order of $NH_4NO_3,\;(NH_4)_2SO_4,\;asparagine,\;KNO_3$, and their effects on the sclerotial production in the order of $KNO_3,\;NH_4NO_3,\;asparagine,\;(NH_4)_2SO_4$. The optimum concentration of thiamine was about 12r/l in $KNO_3$ and about 16r/l in asparagine for the growth of mycelia; about 8r/l in $KNO_3$ and $NH_4NO_3$, and 16r/l in asparagine for the production of sclerotia. 7. After the fungus started to grow, the pH value of cultural filtrate rapidly dropped to about 3.5. Hereafter, its rate slowed down as the growth amount increased and did not depreciated below pH2.2. 8. The role of thiamine in the growth of the organism was vital. If thiamine was not added, the combination of biotin, pyridoxine, and inositol did not show any effects on the growth of the organism at all. Equivalent or better mycelial growth was recognized in the combination of thiamine+pyridoxine, thiamine+inositol, thiamine+biotin+pyridoxine, and thiamine+biotin+pyridoxine+inositol, as compared with thiamine alone. In the combinations of thiamine+biotin and thiamine+biotin+inositol, mycelial growth was inhibited. Sclerotial production in dry weight increased more in these combinations than in the medium of thiamine alone. 9. The stimulating effects of the Penicillium cultural filtrate on the mycelial growth was noticed. It increased linearly with the increase of filtrate concentration up to 6-15 ml/50ml basal medium solution. 10. $NH_4NO_3$. as a nitrogen source for mycelial growth was more effective than asparasine regardless of the concentration of cultural filtrate. 11. In the series of fractionations of the cultural filtrate, mycelial growth occured in unvolatile, ether insoluble cation-adsorbed or anion-unadsorbed substance fractions among the fractions of volatile, unvolatile acids, ether soluble organic acids, ether insoluble, cation-adsorbed, cation-unadsorbed, anion-adsorbed and anion-unadsorbed. and anion-un-adsorbed substance tested. Sclerotia were produced only in cation-adsorbed fraction. 12. According to the above results, it was assumed that substances for the mycelial growth and sclerotial formation and inhibitor of sclerotial formation were include::! in cultural filtrate and they were quite different from each other. I was further assumed that the former two substances are un volatile, ether insotuble, and adsorbed to cation-exchange resin, but not adsorbed to anion, whereas the latter is unvolatile, ether insoluble, and not adsorbed to cation or anion-exchange resin. 13. Seven amino acids-aspartic acid, cystine, glysine, histidine, Iycine, tyrosine and dinitroaniline-were detected in the fractions adsorbed to cation-exchange resin by applying the paper chromatography improved with DNP-amino acids. 14. Mycelial growth or sclerotial production was not stimulated significantly by separate or combined application of glutamic acid, aspartic acid, cystine, histidine, and glysine. Tyrosine gave the stimulating effect when applied .alone and when combined with other amino acids in some cases. 15. The tolerance of sclerotia to moist heat varied according to their water content, that was, the dried sclerotia are more tolerant than wet ones. The sclerotia harvested directly from the media, both Type-1 and Type-2, lost viability within 5 minutes at $52^{\circ}C$. Sclerotia dried for 155 days at$26^{\circ}C$ had more tolerance: sclerotia of Type-l were killed in 15 mins. at $52^{\circ}C$ and in 5 mins. at $57^{\circ}C$, and sclerotia of Type-2 were killed in 10 mins. both at $52^{\circ}C$ or $57^{\circ}C$. 16. Cultural sclerotia of both strains maintained good germinability for 132 days at$26^{\circ}C$. Natural sclerotia of them stored for 283 days under air dry condition still had good germinability, even for 443 days: type-l and type-2 maintained $20\%$ and $26.9\%$ germinability, respectively. 17. The tolerance to low temperature increased in the order of mycelia, felts and sclerotia. Mycelia completely lost the ability to grow within 1 week at $7-8^{\circ}C$> below zero, while mycelial felts still maintained the viability after .3 weeks at $7-20^{\circ}C$ below zero, and sclerotia were even more tolerant. 18. Sclerotia of type-l and type-2 were killed when dipped into the $0.05\%$ solution of mercury chloride for 180 mins. and 240 mins. respectively: and in the $0.1\%$ solution, Type-l for 60 mins. and Type-2 for 30 mins. In the $0.125\%$ uspulun solution, Type-l sclerotia were killed in 180 mins., and those of Type-2 were killed for 90 mins. in the$0.125\%$solution. Dipping into the $5\%$ copper sulphate solution or $0.2\%$ solution of Ceresan lime or Mercron for 240 mins. failed to kill sclerotia of either Type-l or Type-2. 19. Inhibitory effect on mycelial growth of Benlate or Tachi-garen in the liquid culture increased as the concentration increased. 6 days after application, obvious inhibitory effects were found in all treatments except Benlate 0.5ppm; but after 12 days, distingushed diflerences were shown among the different concentrations. As compared with the control, mycelial growth was inhibited by $66\%$ at 0.5ppm and by $92\%$ at 2.0ppm of Benlate, and by$54\%$ at 1ppm and about $77\%$ at 1.5ppm or 2.0ppm of Tachigaren. The mycelial growth was inhibited completely at 500ppm of both fungicides, and the formation of sclerotia was checked at 1,000ppm of Benlate ant at 500ppm or 1,000ppm of Tachigaren. 20. Consumptions of glucose or ammonium nitrogen in the culture solution usually increased with the increment of mycelial growth, but when Benlate or Tachigaren were applied, consumptions of glucose or ammonium nitrogen were inhibited with the increment of concentration of the fungicides. At the low concentrations of Benlate (0.5ppm or 1ppm), however, ammonium nitrogen consumption was higher than that of the ontrol. 21. The amount of mycelia produced by consuming 1mg of glucose or ammonium nitrogen in the culture solution was lowered markedly by Benlate or Tachigaren. Such effects were the severest on the third day after their treatment in all concentrations, and then gradually recovered with the progress of time. 22. In the sand culture, mycelial growth was not inhibited. It was indirectly estimated by the amount of $CO_2$ evolved at any concentrations, except in the Tachigaren 100mg/g sand in which mycelial growth was inhibited significantly. Sclerotial production was completely depressed in the 10mg/g sand of Benlate or Tachigaren. 23. There was no visible inhibitory effect on the germination of sclerotia when the sclerotia were dipped in the solution 0.1, 1.0, 100, 1.000ppm of Benlate or Tachigaren for 10 minutes or even 20 minutes.

  • PDF