Park, Geun-Il;Park, Byung-Sun;Cho, Il-Hoon;Kim, Joon-Hyung;Ryu, Seung-Kon
Nuclear Engineering and Technology
/
v.32
no.5
/
pp.504-513
/
2000
The adsorption characteristics of methyl iodide generated from the simulated off-gas stream on various adsorbents such as silver ion-exchanged zeolite (AgX), zeocarbon and activated carbon were investigated. An extensive evaluation was made on the optimal silver ion-exchanged level for the effective removal of methyl iodide at temperature up to 38$0^{\circ}C$. The degree of adsorption efficiency of methyl iodide on silver ion-exchanged zeolite is strongly dependent of silver ion-amount and process temperature. The influence of temperature, methyl iodide concentration and silver ion-exchanged level on the adsorption efficiency is closely related to the pore characteristics of adsorbents. It would be facts that the effective silver ion-exchanged level was about 10 wt%, based on the degree of silver utilization for the removal of methyl iodide.
An author has been known that A-type zeolite supported with silver ions has excellent antibacterial activity. However, it is no research of concern in the antibacterial activity of eluted silver ions. This study tested the elution of silver ions from A-type zeolite silver ions in deionized distilled water and NaNO$_3$ aqueous solution. In NaNO$_3$ aqueous solution of 74mM to 588mM, it was found that the concentration of silver ions and electric conductivity increased with the increasing concentration of sodium ions, and equilibrated at 15 min, and the ion exchange equilibrium coefficient, k, is 1.3${\times}$10$\^$-3/. However, deionized distilled water is not equilibrated to pass 6 months. A-type zeolite sodium ions showed no antibacterial activity. It was found that antibacterial activity was exhibited even at the concentration of 10 nM of eluted silver ions, and E-coli died with the incorporation of 2.43${\times}$10$\^$8/ Ag ion/cell. antibacterial activity of A-type zeolite silver ions were mainly attributed to hydroxyl radical.
Park, Geun Il;Cho, Il-Hoon;Kim, Kae-Nam;Lee, Min Ok;Yu, Jae-Hyung
Journal of Korean Society of Environmental Engineers
/
v.22
no.10
/
pp.1765-1775
/
2000
The removal of radioactive organic iodide generated from high temperature process in nuclear facility was generally performed by silver ion-exchanged synthetic zeolite (AgX). The purpose of this study is to obtain fundamental data for the substitution of natural zeolite(NZ) in stead of synthetic zeolite as supporter for the removal of methyl iodide in high temperature conditions. Therefore, NZ was modified with NaCl, $NaNO_3$ solution, and the analysis of the physical or surface characteristics through XRD, SEM-EDAX, and BET analysis was performed. In order to obtain the optimal surface-modification condition of NZ, adsorption capacities at $150^{\circ}C$ on surface-modified silver ion-exchanged NZ prepared with the variation of solution concentration were evaluated. The optimal condition of surface modification is that concentration of $NaNO_3$ and $AgNO_3$ are 1N and 1.2N, respectively(namely Ag-SMNZ). The adsorption isotherm of methyl iodide on Ag-SMNZ in a range of $100^{\circ}C$ to $300^{\circ}C$ was obtained, which is similar to that of 13X, and the maximum adsorption amount of Ag-SMNZ reached approximately 50% that of AgX. It would be evaluated that the adsorption capacity at $150{\sim}200^{\circ}C$ is relatively higher than other temperature, and the chemisorption between silver and iodide is attributed to a strong binding even after desorption test.
The structures of dehydrated $Ag_9Cs_3$-A treated with hydrogen gas at three different temperatures have been determined by single-crystal X-ray diffraction techniques. Their structures were solved and refined in the cubic space group Pm3m at 23(1) $^{\circ}C$. All crystals were ion exchanged in flowing streams of aqueous $AgNO_3$/$CsNO_3$ with a mole ratio 1:3.0 to achieve the desired crystal composition. The structures treated with hydrogen at $23^{\circ}C(a=12.288(1)\;{\AA})\;and\;310^{\circ}C(a=12.291(2)\;{\AA})$ refined to the final error indices R1 = 0.091 and R2 = 0.079, and 0.065 and 0.073, respectively, using the 216 and 227 reflections, respectively, for which I >3${\sigma}$(I). In both of these structures, eight $Ag^+$ ions are found nearly at 6-ring centers, and three $Cs^+$ ions lie at the centers of the 8-rings at sites of $D_{4h}$ symmetry. One $Ag^{\circ}atom$, presumably formed from the reduction of a $Ag^+$ ion by an oxide ion of a residual water molecule or of the zeolite framework during the dehydration process, is retained within the zeolite, perhaps in a cluster. In these two structures hydrogen gas could not enter the zeolite to reduce the $Ag^+$ ions because the large $Cs^+$ ions blocked all the 8-windows. However, hydrogen could slowly diffuse into the zeolite and was able to reach and to reduce about half of the $Ag^+$ ions in the structure only at high temperature ($470^{\circ}C$). The silver atoms produced migrated out of the zeolite framework, and the protons generated led to substantial crystal damage.
The crystal structure of The crystal structure of $Ag^+$-Exchanged Zeolite A, $Ag_{4.6}Na_{7.4}-A$, dehydrated, treated with $H_2$, and evacuated, all at $350^{\circ}C$, has been determined by single crystal x-ray diffraction methods in the cubic space group Pm3m at $24(1)^{\circ}C;$ a = $12.208(2)\AA.$ The structure was refined to the final error indices R1 = 0.088 and R2 (weighted) = 0.069 using 194 independent reflections for which II_0$ > $3{\sigma}(I_0)$. On threefold axes near the centers of 6-oxygen rings, $7.4 Na^+$ ions and $0.6 Ag^+$ ions are found. Two non-equivalent 8-ring $Ag^+$ ions are found off the 8-ring planes, each containing about $0.6 Ag^+$ ions. Three non-equivalent Ag atom positions are found in the large cavity, each containing about 0.6 Ag atoms. This crystallographic analysis may be interpreted to indicate that $0.6 (Ag_6)^{3+}$ clusters are present in each large cavity. This cluster may be viewed as a nearly linear trisilver molecule $(Ag_3)^0$ (bond lengths, 2.92 and 2.94 $\AA;$ angle, $153^{\circ})$ stabilized by the coordination of each atom to a Ag^+$ ion at 3.30, 3.33, and 3.43 $\AA$, respectively. In addition, one of the silver atoms approaches all of the 0(1) oxygens of a 4-ring at $2.76\AA.$ Altogether $7.4 Na^+$ ions, $1.8 Ag^+$ ions, and 1.8 Ag atoms are located per unit cell. The remaining $1.0 Ag^+$ ion has been reduced and has migrated out of the zeolite framework to form silver crystallites on the surface of the zeolite single crystal.
Water vapor adsorption kinetics of 3 different types of chitosan-based films, i.e., control chitosan, chitosan/montmorillionite (Na-MMT), and chitosan/silver-zeolite (Ag-Ion) nanocomposite films, were investigated at temperature range of $10-40^{\circ}C$. In all the films, water vapor is initially adsorbed rapidly and then it comes slowly to reach equilibrium condition. Reasonably good straight lines were obtained with plotting of 1/($m-m_0$) vs. l/t. It was found that water vapor adsorption kinetics of chitosan-based films was accurately described by a simple empirical model and the rate constant of the model followed temperature dependence according to Arrhenius equation. Arrhenius kinetic parameters ($E_a$ and $k_o$) for water vapor adsorption by chitosan-based films showed a kinetic compensation effect between the parameters with the isokinetic temperature of 315.52 K.
The structure of partially $Ag^+$-exchanged zeolite 4A, $Ag_{7.6}Na_{4.4}-A$, vacuum dehydrated at $370^{\circ}C$, has been determined by single-crystal x-ray diffraction techniques in the cubic space group, Pm3m (a = 12.311(1)${\AA}$) at $24(1)^{\circ}}C$. The structure was refined to the final error indices $R_1$ = $R_2$ (weighted) = 0.064 using 266 independent reflections for which $I_0$>$3{\sigma}(I_0)$. Three $Na^+$ ions occupy the 3 8-ring sites, and the remaining ions, 1.4 $Na^+$ and 6.6 $Ag^+$, fill the 8 6-ring sites; each $Ag^+$ ion is nearly in the [111] plane of its 3 O(3) ligands, and each $Na^+$ ion is 0.9${\AA}$ from its corresponding plane, on the large-cavity side. One reduced silver atom per unit cell was found inside the sodalite unit. It was presumably formed from the reduction of a $Ag^+$ ion by an oxide ion of a residual water molecule or of the zeolite framework. It may be present as a hexasilver cluster in 1/6 of the sodalite units, or, most attractively among several alternatives, as an isolated Ag atom coordinated to 4 Ag ions in each sodalite unit to give $(Ag_5)^{4+}$, symmetry 4mm.
Kim, Yun-Jong;Kim, Taek-Nam;Kim, Sang-Bae;Jo, Seong-Baek;Jo, Geon-Jun;Lee, Tae-Hyeong
Korean Journal of Materials Research
/
v.11
no.2
/
pp.120-125
/
2001
Generally, hydroxyapatite(HAp), zeolite, carbon molecular sieve , activated carbon and alumina are used as heavy metal ions adsorption materials. Among those adsorption materials, HAp which has good positive ion-exchange ability with metal ion, and zeolite are utilized in wastewater treatment. Most of water pollutions are caused by hazardous heavy metals ions as well as bacteria in waste water. In this study, a adsorption materials (HAP and zeolite) are ion-exchanged with a well known antimicrobial metal ions, such as $Ag^+,\;Cu^{2+},\;and\;Zn^{2+}$, in order to give a adsorption of heavy metal ions and a killing effects of bacteria. The antimicrobial effects of adsorption materials are observed using by E. Coli. The results show that there is a complete antimicrobial effect in the adsorption materials with $Ag^+$ at the concentration of $1{\times}10^{-4}$cell/$m\ell$ of E. Coli until 24 hours. However, there is not good antimicrobial effects in the adsorption materials with $Cu^{2+},\;and\;Zn^{2+}$ substitution. Feng et. al. showed the denaturation effects of silver ions which induces the condensed DNA molecules and losing their replication abilities.
Four crystal structures of dehydrated Ag(I) and Tl(I) exchanged zeolite A, $Ag_{12-x}Tl_x$-A, x = 2, 3, 4, and 5, have been determined by single-crystal x-ray diffraction techniques. Their structures were solved and refined in the cubic space group Pm3m at $21(1)^{\circ}C$. All crystals were ion exchanged in flowing streams of mixed $AgNO_3\;and\;TlNO_3$ aqueous solution, followed by dehydration at $350^{\circ}C$ and $2{\times}10^{-6}$ Torr for 2 days. In all of these structures, one-sixth of the sodalite units contain octahedral hexasilver clusters at their centers and eight $Ag^+$ ions are found on threefold axes, each nearly at the center of a 6-oxygen ring. The hexasilver cluster is stabilized by coordination to eight $Ag^+$ ions. The Ag-Ag distance in the cluster, ca. 2.92 ${\AA}$, is near the 2.89 ${\AA}$ bond length in silver metal. The remaining five-sixths of the sodalite units are empty of silver species. The first three $Tl^+$ ions per unit cell preferentially associate with 8-oxygen rings, and additional $Tl^+$ ions, if present, are found on threefold axes in the large cavity.
Four different types of chitosan-based nanocomposite films were prepared using a solvent casting method by incorporating with four types of nanoparticles, i.e., an unmodified montmorillonite (Na-MMT), an organically modified montmorillonite (Cloisite 30B), a Nano-silver, and a Ag-zeolite (Ag-Ion). X-ray diffraction patterns of the nanocomposite films indicated that a certain degree of intercalation was formed in the nanocomposite films, with the highest intercalation in the Na-MMT-incorporated films followed by films with Cloisite 30B and Ag-Ion. SEM micrographs showed that in all the nanocomposite films, except the Nanosilver-incorporated one, nanoparticles were dispersed homogeneously throughout the chitosan polymer matrix. Consequently, mechanical and barrier properties of chitosan films were affected through intercalation of nanoparticles, i.e., tensile strength (TS) increased by 7-16%, while water vapor permeability (WVP) decreased by 25-30% depending on the nanoparticle material tested. In addition, chitosan-based nanocomposite films, especially silver-containing ones, showed a promising range of antimicrobial activity.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.