• Title/Summary/Keyword: silt soil

Search Result 525, Processing Time 0.025 seconds

Effect of Liquefaction Resistence of Fine-Grained Soils on the Reclaimed Land (준설매립지반의 세립토가 액상화 강도에 미치는 영향)

  • Kim, Jong-Kook;Yoon, Won-Sub;Park, Sang-Jun;Chae, Young-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1717-1726
    • /
    • 2008
  • Vibration triaxial compression test was put in influence for liquefaction strength of fine grained soil of dredged and reclaimed ground and consideration for fine fraction content, relative density, overconsolidation ratio and plasticity index in this study. By the results of these test, the liquefaction strength increased with fine fraction content and the relative density, overconsolidation ratio incresed with liquefaction strength too. However, in the case of nonplastic silt was the smalist liquefaction strength which influenced by dilatancy and interlocking when silt content was 34.7%(average grading 0.12mm). Therefore, liquefaction strength of fine grained soil of dredged and reclaimed ground increased with fine fraction content so it will help to make lower liquefaction.

  • PDF

Effect of Tillage on Nonpoint Source Pollution of Surface and Ground Water System (I); Effect of Tillage Practices on Density and Saturation of Soil

  • ;shirmohammadi,Adel
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.E
    • /
    • pp.1-11
    • /
    • 1992
  • Increasing national concern on nonpoint source pollution of surface and ground water Systems has led researchers and policy makers to develop certain agricultural Best Management Practices. As an initial step of broad study program above mentioned, this study reflected the effects of different tillage practice on bulk density and degree of saturation on two regional soils, namely Tama silt loam and Catlin silt loam. Results may help to clarify some of the conflicting findings on the impact of tillage systems on these parameters and it may also explain some of the reasons for specific role that different tillage systems play regarding nonpoint source pollution from agricultural fields.

  • PDF

Proximate Analysis of Ipomea Batatass L. Grown in Two Different Zones in Imo State

  • meoka, N.U.;Ogbonnaya, C.I.;Ohazurike, N.C.
    • The Korean Journal of Food & Health Convergence
    • /
    • v.5 no.1
    • /
    • pp.13-19
    • /
    • 2019
  • Proximate analysis of Ipomea batatass L. grown in two different locations in Imo State were investigated. Standard soil analytical method was used to determine the physiochemical contents of the two soil sample collected from Mgbidi and Orji Ipomea batatass L. farm land. The soil sand from Ipomea batatass L. root in Orji farm recorded highest percentage value of 75.00% compared to the soil sand Ipomea batatass L. root in Mgbidi farm with 27.00% value. The percentage value of silt was different as the soil Ipomea batatass L. root in Mgbidi farm had high value of 29.40% while soil silt of Ipomea batatass L. root in Orji farm had 13.40%. The soil clay, pH, Phosphorus and Nitrogen from Ipomea batatass L. root in Mgbidi farm recorded highest percentage value of 43.60%, 5.7, 23.20 and 0.35 compared to the soil sand Ipomea root in Orji farm with 11.60%, 5.4, 16.70 and 0.09 value respectively. Ca, Mg, K, and Na analyzed followed the same trend as the soil from Ipomea root in Mgbidi farm had high percentage value of Ca (10.00), Mg (1.60), K (0.54) and Na (0.43) respectively. The systematic study of physiochemical of the Ipomea soils could help in understanding the nutritional composition, the basic characteristics of the soils and the constraints associated with the management of the soils from the two locations.

Relationship of Soil Particle Size and Organic Matter Content to the Bulk Density in Paddy Soil (답토양(畓土壤)의 입경분포(粒徑分布) 및 유기물함량(有機物含量)과 용적밀도(容積密度)와의 관계(關係))

  • Hur, Bong-Koo;Kim, Zhoo-Hyeon;Kim, Young-Sang;Park, Yong-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.3
    • /
    • pp.155-159
    • /
    • 1993
  • This study was initiated to obtain the scientific information for the improvement of paddy soil. Mean values and mutual relationships of bulk density, pH values and the content of organic matter were investigated at the 124 field sites shown to be nationwide high-yielding, young seedling field s and their neighboring fields under the different soil textures and depths. The soil samples were collected and those samples were analyzed in the laboratory of Agricultural Sciences Institute. Mean values among the different soil textures and depths were estimated with loam-textured. Bulk density were significantly correlated with sand and silt in topsoil, and that were appeared to be correlated to sand, silt + clay, pH and content of organic matter highly significant in 1% level. Regression equation of soil bulk density(Y) to clay(C), orgnic matter (OM) and content of silt + clay(S+C) were as follows for the topsoil, Y=1.365+0.006C-0.003(S+C)~0.034OM (R=0.067*), and for the subsoil, Y=1.548 -0.002C-0.0007 (S+C) -0.036OM (R=0.122**).

  • PDF

Stress-strain Behavior of Remolded Clay Using Different Shear Rate and Plastic Indices (전단속도와 소성지수를 달리한 재생성 점성토의 응력-변형률 거동)

  • Lee, Yonghee;Kang, Kwon-Soo;Jung, Sang-Guk;Kang, Jintae;Kim, Daehyeon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.27-33
    • /
    • 2011
  • In general, the shear strength of a clay specimen under the direct shear test and the triaxial compression test increases with an increase in the shear rate. This study investigates the effects of shear rate and silt content on the stress-strain behavior of remolded Gwangyang clay, by changing the shear rate and the silt content. Based on the results of the triaxial compression tests, the equi-strain line of remolded Gwangyang clay shows initially positive slope and then becomes flat at certain strain level. As the strain level where the equistrain becomes flat is different depending on the soil with different silt contents, this can be considered as the inherent property of soil.

Model tests on the bearing capacity of pervious concrete piles in silt and sand

  • Han Xia;Guangyin Du;Jun Cai;Changshen Sun
    • Geomechanics and Engineering
    • /
    • v.38 no.1
    • /
    • pp.79-91
    • /
    • 2024
  • The settlement, bearing capacity, axial force, and skin friction responses of pervious and impervious concrete piles in silty and sandy underlying layer foundations and of pervious concrete piles in model tests were determined. The results showed that pervious concrete piles can exhibit high strengths, provide drainage paths and thus reduce foundation consolidation time. Increasing the soil layer thickness and pile length could eliminate the bearing capacity difference of pervious piles in a foundation with a silty underlying layer. The pervious concrete piles in the sandy underlying layer were more efficacious than those in the silty underlying layer because the sandy underlying layer can provide more bearing capacity than the silty underlying layer. The results indicated that the performances of the pervious concrete piles in the sand and silt foundations differed. The pervious concrete piles functioned as floating piles in the underlying layer with a lower bearing capacity and as end-bearing piles in the underlying layer with a higher bearing capacity.

Feasibility of Present Soil Remediation Technologies in KOREA for the Control of Contaminated Marine Sediment: Heavy Metals (우리나라 현존 토양정화 기술의 해양오염퇴적물 정화사업 적용 가능성 검토: 중금속)

  • Kim, Kyoung-Rean;Choi, Ki-Young;Kim, Suk-Hyun;Hong, Gi-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1076-1086
    • /
    • 2010
  • Soil remediation technologies were experimented to evaluate whether the technologies could be used to apply remediation of contaminated marine sediment. In this research, marine sediments were sampled at "Ulsan" and "Jinhae" where remediation projects are considered, and then the possibility of heavy metal removal was evaluated throughout the technologies. Heavy metal concentration of silt and clay fraction was higher than that of sand fraction at "Ulsan". Heavy metal removal of the silt and clay fraction was arsenic (As) 81.5%, mercury (Hg) 93.8% by particle separation, cadmium (Cd) 72.2%, mercury (Hg) 93.8% by soil washing technology, cadmium (Cd) 70.8%, lead (Pb) 65.6% by another soil washing technology. Based on experimental results, tested particle separation and soil washing technologies could be used to remove heavy metals of sand fraction and silt and clay fraction. Heavy metal removal by soil washing technology which was composed of separation, washing and physical or chemical reaction by additives such as acid, organic solvents was more effective comparing to that of particle separation. Since heavy metal concentration of all treated samples was suitable for national soil standards, all the tested technologies were could be used not only to remove heavy metals of marine contaminated sediment but also to reuse treated samples in land.

Correlation of Soil Physical Properties and Growth of Turfgrass on the Ground of Olympic-mainstadium (Olympic 주경기장 지반 상토층의 토양 물리성과 잔디 생육의 상관관계)

  • 김인철;주영규;이정호
    • Asian Journal of Turfgrass Science
    • /
    • v.16 no.1
    • /
    • pp.31-40
    • /
    • 2002
  • This study was conducted to analyze the correlation of soil physical properties and growth of turfgrass on the ground of Olympic-mainstadium. Soil hardness and turf visual quality were measured at 77 plots (10m x 10m divided each) independently and analyzed correlation later. Physicochemical properties of the topsoil analyzed from three typical levels of the severely, moderately, slightly compacted areas. The ground showed high hardness at the center circle and the goal line, but low at the end line areas. On the contrary, visual quality rate of turfgrass was low at the center circle and the goal line, but high at the end line areas. The correlation was shown a significant negative value on soil hardness between turf visual quality Soil hardness seems to be accelerated by the improper soil texture of sandy loam which contained a large amount of finer particle of silt (10.7%) and clay (11.1%) which values exceeded for USGA (United State Golf Association) recommendation. Deterioration of turf quality resulted initially from improper construction and followed by high soil compaction with continuous uses of the ground without proper maintenance. To perform the international quality of the turf ground, the initial construction procedures should be followed by standard specifications of sport ground.

Prediction for degradation of strength and stiffness of fine grained soil using Direct Simple Shear Test (DSST) (직접단순전단시험을 통한 세립토의 강도와 강성저하 예측)

  • Song, Byung-Woong;Yasuhara, kazuya;Kim, Jeong-Ho;Choi, In-Gul;Yang, Tae-Seon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.529-536
    • /
    • 2005
  • Based on an estimating method for post-cyclic strength and stiffness with cyclic triaxial tests, Direct Simple Shear (DSS) tests were carried out to confirm whether the method can be adapted to DSS test on fine-grained soils: silty clay, plastic silt, and non-plastic silt. Results from post-cyclic DSS tests were interpreted by a modified method as adopted for post-cyclic triaxial tests. In particular, influence of plasticity index for fine-grained soils was emphasised. Findings obtained from the present study are: (i) the higher the plasticity index of fine-grained soils is, the less not stiffness ratio but strength ratio decreases with increment of a normalised excess pore water pressure; and (ii) post-cyclic strength and stiffness results from DSS tests agree well with those predicted by the method modified from a procedure used for triaxial test results.

  • PDF

Effect of Soil Temperature on Growth and Root Characteristics and P, K Uptake by Soybean (토양온도(土壤溫度)가 대두(大豆)의 생육(生育) 및 뿌리 특성(特性)과 P, K 흡수(吸收)에 미치는 영향(影響))

  • Jung, Yeong-Sang;Han, Seong;Ha, Sang-Geun;Lim, Hyung-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.1
    • /
    • pp.16-25
    • /
    • 1992
  • A pot experiment was conducted to understand effect of soil temperaute on soybean shoot and root growth, and its relations to nutrient uptake including phosporus and potassium. Pregerminated soybean seedlings, Paldal cultivar, were planted for 43 days on the pots with Ihyeon silt loam and Samgag sandy loam in the temperature controled water baths at 17, 25 and $32^{\circ}C$. Shoot and root samples were taken at four times and analyzed. Shoot and root dry matter weights were heavier as higher soil temperaure. The root dry matter increased faster than shoot at earlier period. Shoot dry matter weights grown at 17 and $25^{\circ}C$ showed little difference between two soils, however, those grown in silt loam at $32^{\circ}C$ were heavier than sandy loam. The total lengths of roots were longer as higher soil temperature, and longer in silt loam than sandy loam. The roots grown in sandy loam at low temperature were thicker than the roots grown in silt loam at high temperature. The uptakes of phosphorus and potassium were higher as higher tempeature with same trend with dry matter. The uptake rate of unit root surface area was higher in sandy loam soil than silt loam. The uptake rates showed strong dependence on soil temperature as well as dependence of water uptake rate. Based on Dalton and Gardner model, at high temperature the dependence trend of phosphorus and potassium on soil temperature showed with active uptake model, while at low temperature the dependence showed without active uptake model.

  • PDF